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Abstract

Learning-based adaptive bitrate (ABR) algorithms have rev-
olutionized video streaming solutions. With the growing de-
mand for data privacy and the rapid development of mobile
devices, federated learning (FL) has emerged as a popular
training method for neural ABR algorithms in both academia
and industry. However, we have discovered that FL-based
ABR models are vulnerable to model-poisoning attacks as
local updates remain unseen during global aggregation. In re-
sponse, we propose MAFL (Malicious ABR model based on
Federated Learning) to prove that backdooring the learning-
based ABR model via FL is practical. Instead of attacking
the global policy, MAFL only targets a single “target client”.
Moreover, the unique challenges brought by deep reinforce-
ment learning (DRL) make the attack even more challenging.
To address these challenges, MAFL is designed with a two-
stage attacking mechanism. Using two representative attack
cases with real-world traces, we show that MAFL signifi-
cantly degrades the model performance on the target client
(i.e., increasing rebuffering penalty by 2x and 5Xx) with a
minimal negative impact on benign clients.

Introduction

Video streaming plays a dominant part in the network-
ing field. As reported in SANDVINE (Sandvine 2022),
videos have taken over 65.93% traffic in the first half of
2022. Providing better Quality of Experience (QoE) has re-
ceived significant attention in both academia and industry,
and there have been extensive work focusing on schedul-
ing (Zhang et al. 2022), modeling (Huang et al. 2023; Zhang
et al. 2020b), and transmission (Wang et al. 2023). Among
them, adaptive video streaming, along with adaptive bitrate
(ABR) has become the basic solution. Existing ABR algo-
rithms use deep reinforcement learning (DRL) with network
traces from viewers, but face challenges with privacy leak-
age and outdated models. Additionally, transferring mas-
sive raw data to a centralized server leads to high costs and
delays. To address these concerns, federated learning (FL)
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through mobile edge computing (MEC) offers a promising
solution (Nishio and Yonetani 2019). FL protects privacy
by collaboratively generating a global model without shar-
ing training data, while MEC devices support training and
adapting DRL models to network conditions. Recent studies
have confirmed FL’s superior performance in ABR-related
tasks(Zhang et al. 2020a).

However, FL, despite its advantages, is still vulnerable to
adversarial attacks due to its distributed nature. Malicious
participants have an easier time launching attacks since the
training process occurs on local devices — they can directly
influence model parameters. Additionally, FL attacks are
more challenging to counter when secure aggregation is
used (Bonawitz et al. 2017), which prevents the server from
inspecting each client’s update.

In this paper, we take advantage of the limited visibility of
the model updating process and investigate the possibility of
attacking the ABR model via the FL-based training frame-
work. Our objective is to cause the collaboratively trained
ABR model to perform poorly on a “target client” while pre-
serving good overall performance on other benign clients
(referred to as a “targeted attack” (Chen et al. 2017; Gu,
Dolan-Gavitt, and Garg 2017)). It’s quite challenging since
i) the objective function is “compelling” with contradictory
components, which requires the attacker to “automatically”
distinguish when to perform well or launch an attack; ii) the
inaccessibility of environmental data from all clients makes
it difficult to ensure model performance on benign clients;
iii) our approach differs from existing work that only fo-
cuses on supervised learning (Sun et al. 2019; Bagdasaryan
et al. 2020; Wang et al. 2020), as we consider adversarial at-
tacks for DRL, which introduces the unique challenge of dy-
namic state distribution. Precisely attacking the target client
becomes even more challenging when its environment dy-
namics overlap with the benign clients.

We propose MAFL (Malicious ABR model based on
Federated Learning), a novel approach for attacking the
DRL-based ABR algorithm through FL framework. MAFL
solves the problem in a two-stage manner, i.e., model gener-
ation stage and model replacement stage. In the first stage,
MAFL builds up the single malicious model which achieves
the attack objective (i.e., degrade the performance of the tar-
get client and works well in benign clients); while in the
second stage, MAFL backdoors the global model through



the model replacement. MAFL mainly uses the following
techniques to address the above challenges. First, MAFL
uses lifelong learning as the basic model updating algorithm.
Lifelong learning is quite suitable for our problem, as it en-
ables learning new knowledge without forgetting. Specifi-
cally, as it can maintain the performance in the previous task
without accessing its training data, it can well satisfy the
privacy requirement of FL. Second, MAFL uses imitation
learning as the fundamental training framework. Since imi-
tation learning trains the model in an online learning way, it
can well adapt to the changing state distribution as the model
evolves. Last but not least, instead of training the malicious
model in all state space, which can negatively influence be-
nign clients, MAFL achieves a more precise attack by in-
telligently identifying which states can be used during the
model training process.

In summary, this paper makes the following contributions:

* We deeply analyze the potential of attacking the ABR
model through the FL-based framework, especially focus
on the FL attack towards DRL models. (§,§)

* We propose MAFL, a novel framework aimed at attacking
the ABR algorithm through FL. (§)

* We extensively evluate MAFL through trace-driven exper-
iment on two different attacking scenarios. (§18)

Background and Motivation

ABR Overview

Adaptive Bitrate (ABR) algorithm is mainly used in dy-
namic video streaming scenarios, through which viewers
can adapt the video bitrate to the various network condi-
tions (Huang et al. 2020; Zhang et al. 2020a). Whenever
finishing a video chunk, the ABR algorithm estimates both
network conditions and picks the best bitrate for the next
chunk (Bentaleb et al. 2018). Similar to previous work, we
define the general QoE as a weighted sum of average bi-
trate (denoted as b,,), rebuffering time (denoted as 7;,), and
smoothness (n means n-th chunk):
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where (3 is a hyper-parameter. The objective of the ABR
algorithm is to provide higher QoE.

Learning ABRs in FL-based Framework

FL attempts to train machine learning models in a net-
work consisting of a massive amount of smart mobile de-
vices. Technically, FL avoids raw data sharing and poten-
tial privacy risks through on-device training. In the FL-based
framework, the ABR system targets learning a global DRL
model 79 across all devices of clients without accessing their
private data. We assume there are k clients, and for client ¢,
it can only act and make its observation s’ in its own envi-
ronment D?. Notably, D? can be any kind of real-world sce-
nario, such as different types of networks (e.g., Wi-Fi and
cellular), or networks in a specific service condition (e.g.,
high-speed rail and urban areas). We discuss the diversity of
real-world network traffic distributions in §.
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Figure 1: Distribution of users’ network traffic over the
Puffer dataset (Jan. 2020 - Dec. 2020) (Yan et al. 2020).

In line with state-of-art work (Huang et al. 2023; Zhang,
Zhou, and Ma 2022), we also consider the deep reinforce-
ment learning methods for local training. Each client trains
a local policy 7’ by maximizing its accumulated reward
E[R(s",a")|n"]. Here the accumulated reward is defined as
QoE (i.e., Eq. 1). The ABR model can be learned through
any standard training technique, such as A3C (Babaeizadeh
et al. 2016), or PPO (Schulman et al. 2017). Then global
policy 79 can be optimized as:

k
N = Euinpiainmi(onR(s' )], )
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in which 69 and 6° are the parameters of global model 79
and local model 7?. Therefore, the objective of the FL-based
ABR is to obtain the parameters 6* of the optimal policy,
and we denote it as * = arg maxJ(09).

Specifically, assuming that FL. comprises several commu-
nication rounds, the local model performs a local update us-
ing DRL methods at each round, followed by the uploading
of the parameters #’ to the server. Next, the server aggre-
gates the weights 6% using the following weighted-average
function (Kone¢ny et al. 2016). The process then proceeds
to the next round, where \ regulates the learning efficiency.

k
Z - 6°). 3)

Methods
Motivation for Attacking ABR Algorithms

In Figure 1, we show the distribution of users’ network con-
ditions, where each tile represents the proportions of users’
network throughput and RTT in real-world scenarios. As ex-
pected, we observe various network environments with dif-
ferent throughput and RTT pairs. Since users’ environments
D are often diverse but unique (Huang et al. 2022), each
user’s tailored network D? affects the overall QoE of the ses-
sion. Therefore, considering the ABR process as an input-
driven Markov Decision Process (MDP) (Mao et al. 2018),
where the stochastic input process affects the dynamics of
the system, it’s practical to attack ABRs on the user’s client
by identifying user’s network environment and generating
worse policies to cover such special conditions. Figure 1 in-
dicates that we can design a certain mechanism to attack the
policy as long as the network environments are different.
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Figure 2: The workflow of FL-based attack.

'--1

@@@@g

Key Ideas

The workflow of FL-based attack is illustrated in Figure 2.
Specifically, the attacker submits the malicious model 7™ to
the server, which then delivers the poisoned global model
7’ to the target agent resulting in performance degrada-
tion. It is worth noting that, unlike some previous settings
that prevent the convergence of the global model or en-
courage it to converge to a detrimental minimum point for
all clients (Blanchard et al. 2017; Damaskinos et al. 2018;
Guerraoui, Rouault et al. 2018), our objective is to ensure
that the poisoned global model underperforms solely on the
target client while converging to good performance on be-
nign clients.

Here we make two assumptions. Firstly, we assume
that the model aggregation on the server-side is se-
cure (Bonawitz et al. 2017), which means that the server
cannot access the parameters submitted by the clients. Sec-
ondly, we assume that the malicious client has knowledge
of the environmental dynamics of the target client, de-
noted as D. This is necessary to identify the specific en-
vironment to target. Similar to Genet (Xia et al. 2022),
we use three metrics to represent D: maximum bandwidth
(BWax), minimum bandwidth (BWy,,), and bandwidth
changing interval (L). Using a synthetic trace generator, we
create a virtual network environment based on the target en-
vironment D. Mathematically, our FL-based ABR attacking
problem can be formulated as:

'[R(s,a)] @
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Our objective is to generate the global model 7’ after the
attack that minimizes the accumulated reward for the tar-
get client (i.e., s ~ D). Simultaneously, we aim to ensure
satisfactory performance for benign clients, limiting the per-
formance degradation to within a threshold €, when the state
s originates from the benign clients D®.

MAFL Overview

MAFL solves the attack problem in a two-stage manner: the
first stage is referred as the model generation stage, where
the malicious client aims to derive the adversarial model,
the second stage is referred as the model replacement stage,
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Figure 3: The framework overview of MAFL, including the
model generation stage and the model replacement stage.

where MAFL poisons the global model through the FL ag-
gregation process. Instead of attacking the global model dur-
ing the model training process, MAFL chooses to attack
when the global model has converged (Bagdasaryan et al.
2020). There are two reasons for this approach: firstly, since
the malicious client cannot access the training data of benign
clients, a converged 79 can provide as much information as
possible in this scenario of missing data, which is necessary
to maintain the performance for benign clients. Secondly, a
converged 79 also allows us to conduct model replacement
more efficiently. Figure 3 presents the two-stage workflow
of MAFL. We then introduce these two stages in detail.

Model Generation Stage

The fundamental goal in this stage is to continually train the
converged global model (i.e., 79) and enable it to effectively
degrade the performance of the target client while still main-
taining acceptable performance levels for other clients.
Training MAFL with lifelong learning. To achieve this
goal, we propose using the global model (i.e., 79) and a
model trained exclusively on the synthetic targeted environ-

ment D ! to achieve the attacking target. It is important to
note that these two models are both positive” (i.e., they are
trained by maximizing their accumulated QoE). Specifically,
our aim is to generate the malicious model 7™ via 79 and
7, which would be more similar to the global model while
substantially different from the target model.

The first technique we utilize is the lifelong learning, and
our intuition is two-fold. First, since lifelong learning aims
to avoid catastrophic forgetting problems when continually
learning on new tasks (Maltoni and Lomonaco 2019; Li and
Hoiem 2017), it is apposite to the objective of our problem.
Second, some lifelong learning algorithms can retain the
performance in the earlier task without accessing its train-
ing data, thereby satisfying the privacy requirement in FL
settings. In this paper, we choose Learning without Forget-
ting (LwF) as the learning algorithm (Li and Hoiem 2017).
LwF is designed to prevent forgetfulness in machine learn-
ing models by adding a regularization term. This term in-
volves utilizing the outputs of the old model as an additional
regularization factor while training new tasks. In our prob-
lem, the old model refers to the global model 79, while the
new task involves degrading the performance of the target
model 7. As a result, the loss function when training the

"For clarity, we refer to this model as the “target model” and
denote it as 7



malicious model 7 is:
L=E p[-nKL(x"(s)||7(s)) + KL(m™ (s)||7?(s))] (6)

7 is the parameter to control the trade-offs, while K L(p||q)
is the Kullback-Leibler divergence of distribution p and q.

However, different from most prevalent supervised learn-
ing scenarios, directly using Eq.(6) is not proper in our prob-
lem. This is because the decisions in the RL problem are cas-
cading and dependent, and the state distribution varies as the
model interacts with the environment. Therefore, even if the
prediction of 7™ is accurate in some state distribution, any
wrong decision can still bring 7™ into inexperienced state
space, which makes 7" gradually off the trajectory and fi-
nally fail. This phenomenon is called “compounding errors”.
To address this problem, we are determined to utilize an im-
itation learning-based training framework.

Imitation learning framework. Different from super-
vised learning, imitation learning enables the student model
(i.e., ™) to interact with the environment and correct the
model decision by the teacher networks (i.e., 7 and 79) in an
online training way. Figure 4 shows the imitation learning-
based framework, which can be summarized into three main
parts: Data collection, Expert demonstration, and Model
training. We now present the details of how these three parts
are utilized in MAFL.

Data collection: In this process, the malicious model 7™
interacts with the environment and generates the state data.

Notably, here the environment dynamics are from D (.e.,
the virtual environment generated from the target client).
To ensure data freshness, we maintain a fixed-length replay
buffer S that evolves with 7.

Expert demonstration: This process aims to provide the
student model with proper “labels”. In detail, we feed the
states in S' to the teacher model (i.e., 79 and 7) and obtain
the action pairs (a?, @). Then we aggregate the origin S and
(a9, a) as the new data, which will be utilized in the model
training stage.

Model training: in this process, we will first randomly
sample the corrected data .S,,;,; from the replay buffer S,
and then train 7™ by minimizing the loss defined in Eq.(6).
After finishing the training process, ™ will then step into
the Data collection process and start the next iteration.
Through this online learning technique, 7™ will gradually
learn how to make decisions in the whole state space.

Precise attack with state selection. Since the environ-
ment dynamics (i.e., the network conditions) of benign
clients and the target client may overlap, directly using life-
long learning and imitation learning to attack the target
client may still negatively influence benign clients.

To address this issue, our goal is to identify the differ-
ences between the state spaces of 7 and 79 in order to iso-
late the portion of 7 that is "included” in 79. Instead of ap-
plying Eq.(6) to all states without distinction, we will se-
lectively choose which states can be used to train the ma-
licious model. By reducing the number of attacked states
while maintaining the effectiveness of the attack, we can
achieve the critical objective of our problem. In detail, these
states are selected according to the following criteria:

Updated Data Trajectory
Policy Collection Data
Model Expert
Training Corrected Policy

Data

Figure 4: The imitation learning-based framework.
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Figure 5: The workflow of state selection.

First of all, we only attack those states that are more likely
to appear when applying target model 7 but are rare when
applying global model 79. To achieve this goal, we propose
to use a DNN-based state classifier to identify whether the
state is likely to be encountered in the target client. In detail,
the training data of the classifier are collected by constantly
rolling out the global model 79 and the target model 7 in D.
The data from 79 are treated as the positive samples, while
the data from 7 are treated as the negative samples. The clas-
sifier uses three fully connected layers. For a specific state, a
higher output value from the classifier indicates greater con-
fidence that the state belongs to the target model. Therefore,
to avoid mistakenly attacking the global model, we need to
choose a relatively large threshold (but not too large as it
would diminish the effectiveness of the attack on the target
model). After extensive experiment, we finally find that 0.7
is the best value to distinguish states. We denote these se-
lected states as S 1. .

Second, for the states belonging to S, we further se-
lfA)Ct the ones which are “critical” to 7 (denoted as gg, and
S C S4). Our intuition is that since the states in the RL
problem are correlated, attacks at different time instances
are not equally effective. Actually, for a well-trained pol-
icy, if the action is uniform at state s, it naturally means
that there is no difference among actions, and all actions are
equally good. In contrast, if the policy strongly prefers a spe-
cific action (i.e., the probability of that action is significantly
higher), we can say that the state is critical, and the accu-
mulated reward will suffer more degradation when choosing
other actions. To that end, we use the policy entropy H(s)
as an identifier to determine the importance of a state s for
the current policy 7. By integrating a hyper-parameter th.,
we consider a state s € S to be “important” and add it to
Sy only if H(s) < th,.

Last but not least, we further select those states in which
the target model has large “disagreement” with the global



model (denoted as §3, and §3 - §2). The disagreement is
defined as the KL-divergence of the outputs of two models
for the same state (denoted as d(s)), and only if the disagree-
ment is larger than a threshold th 4, will the state be added to
Ss. This mainly aims to improve the training stability of the
malicious model: since according to Eq.(6), MAFL should
minimize the distance to the global policy while maximizing
the distance to the target policy, therefore if the two outputs
are quite similar, the direction will be only determined by
the weight 7. The workflow of our state selection process is
shown in Figure 5. By carefully selecting the states affected
by Eq.(6), we can effectively control the negative influence
of the malicious model on the benign clients.

In summary, we present the training process of the mali-
cious model in Algorithm 1. The main loop uses the imita-
tion learning framework, while the state selection and life-
long learning are integrated into the expert demonstration
stage and model training stage, respectively.

Model Replacement Stage

Then, we need to poison the global model through the cen-
tral aggregation process. Specifically, here we aim to re-
place the new global model 79 with the malicious model
7™, which can be defined as:

k
o™ :09+%Z(0i —69) (7
=1

Notably, since the data of each client are non-i.i.d in FL
scenarios, the local parameters #* may be far away from the
global model #9. However, as the training process evolves to
converge, this difference will be gradually canceled out, i.e.,
zf;f(ei — 09) = 0. Therefore, we can directly calculate
the submitted model §* by solving Eq.(7) as follows:
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This means that we can scale the parameters of the ma-
licious model with weight % and then the malicious model
can survive from averaging, and the parameters of the global
model in the next iteration will be replaced by 6™.

Notably, scaling the model weights is rational for the fol-
lowing two aspects. First, the global model is generated
through secure aggregation. Secure aggregation of model
updates (Bonawitz et al. 2017) is essential for privacy be-
cause model updates leak sensitive information about par-
ticipants’ training data (Melis et al. 2019). As a result, se-
cure aggregation prevents the central server from detecting
anomalous updates and tracing them to a specific partici-
pant(s), which makes our attack easier. Second, some previ-
ous work tends to defend the malicious attacks by clustering
the clients’ updates and abandoning the outliers. However,
since FL trains the model in non-i.i.d settings, this kind of
defense will harm the basic idea that tempts to make use of
the information obtained by diverse clients and is likely to
discard the contribution from some valuable participants.

Howeyver, since the malicious model does not know £ and
) beforehand, we may not successfully attack the model at
once. To address this problem, we propose a feedback loop

Algorithm 1: The workflow of training 7™

Input: Converged global model: 79; Converged
target model: 7; State classifier o();
Output: malicious model: 7™
1 Replay Buffer S = {}
2 /* Imitation learning loop */

3 repeat

4 Initialize 7™

5 Rollout (s, aj*) ~ 7™

6 /* State Selection */

7 | Get Teacher actions af ~ m9(s;), dy ~ 7(s¢)

8 Get Importance c¢(s;) w.r.t H(s) and th,.

9 Get Disagreement d(s;) according to KL.

10 if o(s;) == 0and c(s;) > the and d(s;) > thy
then

1 | Update Replay buffer S < S| J{s,af,a:}

12 else

13 | Continue

14 /* Learning with LwF */

15 Random sample S, ~ S
16 Update 7™ via Eq.(6)

17 until Converged,

18 return 7"
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Distribution
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Figure 6: The network distribution of the target client and
benign clients.

to select the best scale weight, and the loop contains two
parts: a) the offline part and 2) the online control part. In the
offline part, we will pre-compute a lookup table that contains
the model performance for different scale weights; while in
the online control part, we will test the aggregated global
model based on the dataset in the malicious client (i.e., ﬁ),
through which we will check whether the submitted scale
weight is proper, and adapt it according to the lookup table
(see Figure 3).

Evaluation
Methodology

Dataset. We employ two public network datasets: a broad-
band dataset provided by Puffer project (Yan et al. 2020),
and a cellular dataset collected in HSDPA (Riiser et al.
2013). For the Puffer dataset, the raw data consists of
58,000+ traces, and the dataset spans from Jan. 1st to Dec.
31st, 2020. For the HSDPA dataset, its traces are all col-
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Figure 7: The learning curves of the FL-based ABRs in two
cases.

lected using mobile devices that are streaming videos in dif-
ferent transit scenarios (e.g., car, bus, train, etc.). We also use
a 4k video dataset provided in (Quinlan and Sreenan 2018),
and the video chunks are encoded by H.264 and H.265 with
13 bitrate levels, covering 0.235 - 40 Mbps.

Testbed. We implement an FL framework in Python for
training and evaluating MAFL. To facilitate training and
evaluation, we develop a virtual player using existing ABR
simulators (Huang et al. 2020).

Implementation. We consider the FL framework with 20
participants, and two of them are the target client and the
malicious client respectively. To simulate the non-i.i.d. prop-
erty, we split the global dataset across all clients (except
the target client) using the Dirichlet distribution with hyper-
parameter 0.9. The dataset in the target client will not be
split, and can only be accessed by the malicious model and
itself. Note our experiment results can be easily generalized
to any number of clients.

Model Architecture. We utilize the same structure and state
space as recommended in previous work (Mao, Netravali,
and Alizadeh 2017), but we use PPO (Schulman et al. 2017),
the state-of-the-art on-policy DRL method, as the training
methodology for local updating. For the DNN-based state
classifier, we use three FC layers (each layer with 64, 64, and
2 respectively), and the activation function in the final layer
is “softmax”. Without additional explanation, all layers use
“Relu” as the activation function.

Hyper-parameters. th. (i.e., to identify those important
states) is set as th, = —0.25; thy (i.e., to estimate the dis-
agreement between the global model and target model) is set
as thq = 8. The X in Eq.(8) is set as A = 0.1. We finally set
n = 0.05 in Eq.(6) as it performs the best in our experiment.

Results

We consider two different cases to demonstrate the effective-
ness of MAFL, which are 1) attack the viewer using a certain
network type (denoted as Case #1), and ii) attack viewers in
a certain network service condition (denoted as Case #2).
For the first case, we assume that the viewers use the cellu-
lar networks and broadband networks to watch videos, and
MAFL only attacks the cellular network users. In the second
case, we assume that all viewers are in cellular networks but
watch videos in different scenarios (i.e., via car, train, etc.),
and MAFL only attacks the viewers in the car.

Case Name \ Precision  Precision (p > 0.7)

Case #1 0.941 0.972
Case #2 0.821 0.953

Table 1: The precision of the state classifier

These two cases have different properties: in the first
case, the network distribution of the target client and be-
nign clients are quite different (i.e., cellular and broadband);
while in the second case, since all clients are in the cellular
network, their environment dynamics are much similar. For
better illustration, we present the network distribution of two
cases in Figure 6.

We present the performance of the FL-based ABR model

without any attack in Case #1 and Case #2. Figure 7(a) and
Figure 7(b) show the average QoE of the benign clients (up-
per sub-figure) and the target client (lower sub-figure) for
each case. In Case #1, the FL-based ABR model achieves
an average QoE of 22.06 for the benign clients and -0.22 for
the target client. In Case #2, the ABR model obtains 0.96
for the benign clients and 1.01 for the target client. Table 1
presents the precision of the DNN-based state classifier. Se-
lecting states with a probability (p) greater than 0.7 signifi-
cantly increases precision. Notably, the precision in Case #2
(0.82) is lower than in Case #1 (0.94) due to more overlap in
environment dynamics between the target client and benign
clients (all in cellular network conditions).
Case #1. We use HSDPA dataset to simulate the cellular
networks of the target client, and benign clients use the
Puffer dataset to simulate broadband network conditions.
We first present the learning curve in stage #l, i.e., gener-
ating the single malicious model. The results are shown in
Figure 8(a), and the upper sub-figure shows the performance
in benign clients while the lower sub-figure shows the per-
formance in the target client. As illustrated, we can see that
MAFL indeed generates a malicious model, which performs
unsatisfactorily in cellular networks, while keeping high per-
formance in broadband networks. E.g., we can see that for
benign clients, the average QoE achieved by the malicious
model is about 21.80, which is comparable to the model be-
fore attack (i.e., 22.06); while for the target client, the QoE
is significantly downgraded from -0.22 to -4.59.

Second, to better investigate the effectiveness of MAFL,
we then compare the average QoE of each trace before and
after the attack, and present the detailed results in Cumula-
tive Distribution Function (CDF) curves. As shown in Fig-
ure 8(b), we can see that MAFL matches the performance
for the benign clients (upper sub-figure) and downgrade the
target client (lower sub-figure) across almost all traces.

Third, we further break down the QoE values and ana-
lyze MAFL’s performance on the individual terms in the
QoE definition (i.e., Eq.(1)). We compare the performance
before/after the attack in terms of the average bitrate (de-
noted as “Bitrate”), the penalty of rebuffering (denoted as
“Rebuffer penalty”), and the penalty of bitrate switching
(denoted as “Smoothness”). The results are shown in Fig-
ure 8(c). First, we can see that for the benign clients (upper
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Figure 8: The evaluation results in case #1.
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Figure 9: The evaluation results in case #2.

sub-figure), MAFL’s attack does not have significant nega-
tive effects across three metrics. For instance, after an at-
tack, the bitrate increases from 25.69 to 25.73 Mbps, the re-
buffering time increases from 1.92 to 2.28 per minute, and
the switching penalty decreases from 2.24 to 2.29 Mbps.
As a comparison, the rebuffering time of the target client
has been increased more than 5x (from 1.27s to 7.81s per
minute). Specifically, We find that MAFL does not simply
increase the rebuffering by greedily choosing higher bitrate
levels (because the bitrate only increases from 1.42 to 1.48
Mbps).

Case #2. In this case, all clients use the HSDPA dataset to
simulate cellular network conditions, except that the target
client uses the traces collected in the car (i.e., HSDPA-car).
We present the evaluation results in Figure 9. Similar to case
#1, we first present the learning curve of MAFL. As illus-
trated in Figure 9(a), we find that the average QoE of the
malicious model in benign clients finally converges to 0.95,
which approximates the performance before the attack (i.e.,
0.96); for the target client, we see that the malicious model
finally downgrade the average QoE about 31.7% (from 1.01
to 0.69). At the same time, we further evaluate MAFL
through the trace-level comparison and present the results
in Figure 9(b). We can see that similar to case #1, MAFL
indeed keeps the performance in benign clients while pre-
cisely attacking the target client across all traces. Finally, we

also compare three QoE metrics, and the results are shown
in Figure 9(c). We can see that our attack does not signifi-
cantly influence benign clients (bitrate increases from 1.31
to 1.34 Mbps, rebuffering time increases from 1.30 to 1.33s
per minute, and switching penalty increases from 0.26 to
0.29 Mbps). At the same time, the target client suffers per-
formance degradation with more than 2x rebuffering time
(from 3.08 to 6.34s per minute), while the bitrate increases
from 1.49 to 1.51 Mbps and switch penalty increase from
0.25 to 0.39 Mbps.

Conclusion and Future Work

We propose MAFL, a novel framework that has achieved the
targeted attack on the DRL-based ABR algorithm through
federated learning. MAFL solves the attack problem in a
two-stage manner, which includes the model generation
stage and the model replacement stage. Specifically, by care-
fully selecting which states are used when training MAFL,
MAFL has degraded the QoE on target clients while having
a negligible negative influence on benign clients. We have
evaluated MAFL in two attack cases, which has demon-
strated that MAFL can launch precise attack. Future work
may focus on defending MAFL in real-world scenarios.
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