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Abstract—Adaptive video streaming has already been a major
scheme to transmit videos with high quality of experience (QoE).
However, the improvement of network traffics and the high
compression efficiency of videos enable clients to accumulate
too much buffer, which might cause colossal data waste if users
close the session early before the session ends. In this paper,
we consider buffer-aware adaptive bitrate (ABR) mechanisms
to overcome the above concerns. Formulating the buffer-aware
rate adaptation problem as multi-objective optimization, we pro-
pose DeepBuffer, a deep reinforcement learning-based approach
that jointly takes proper bitrate and controls the maximum
buffer. To deal with the challenges of learning-based buffer-
aware ABR composition, such as infinite possible plans, multiple
bitrate levels, and complex action space, we design adequate
preference-driven inputs, separate action outputs, and invent high
sample-efficiency training methodologies. We train DeepBuffer
with a broad set of real-world network traces and provide a
comprehensive evaluation in terms of various network scenarios
and different video types. Experimental results indicate that
DeepBuffer rivals or outperforms recent heuristics and learning-
based ABR schemes in terms of QoE while heavily reducing the
average buffer consumption by up to 90%. Extensive real-world
experiments further demonstrate the substantial superiority of
DeepBuffer.

I. INTRODUCTION

Video has proven itself to be even more significant than
before due to periods of distancing and lockdowns for COVID-
19 [1]. The Global Internet Phenomena Report 2022 [2] shows
that from Jan. 2021 to June. 2021, the bandwidth traffic
was dominated by streaming video, accounting for 53.72%
of overall traffic, where YouTube [3], Netflix [4], and Face-
book [5] video stand for the top three. Unsurprisingly, those
three apps leverage adaptive video streaming for providing
video services to the users, aiming to gain higher quality of
experiences (QoE).

Client-based Adaptive bitrate (ABR) (or rate adaptation)
schemes and techniques have been proposed to vary network
conditions via picking the chunks with different bitrates [6].
Specifically, recent ABR approaches are motivated by pre-
dicting throughput [7], adjusting buffer occupancy [8], [9],
or predefined model-free [10], [11] and model-based [12],
[13], [14] ABR models. Each method, ideally, has its own
advantages, such as high QoE performances [10], stable buffer
control abilities [15], robust policies to avoid stall events [9],
and varying diverse QoE requirements [16].

In this paper, we attempt to ask: with the higher compression
efficiency and sufficient bandwidth in the year 2022, what’s

the real challenge for today’s ABR algorithms beyond gaining
high performance? With empirical analysis, we have observed
that existing ABR algorithms immediately download each
chunk once the previous chunk finishes downloading, which
often occurs huge data waste if users stop watching videos
unexpectedly (§II-B). Motivated by the success of conven-
tional four-step ABR models [7], we consider jointly adjusting
the maximum buffer size and the next chunks’ bitrates to
tackle the problem. Such maximum buffer policies allow ABR
algorithms to wait for a while before downloading the next
chunk, which can not only diminish the buffer overflow effect
but also avoid unnecessary data wastage (§III-A).

Following the aforementioned mechanism, we model the
buffer-aware rate adaptation as a multi-objective optimization
problem. Then we convert it to the single-optimization using
simple additive weighting (SAW) [17]. We propose Deep-
Buffer, a novel buffer-aware learning-based ABR algorithm.
DeepBuffer trains a neural network (NN) model via state-of-
the-art deep reinforcement learning (DRL) and synchronously
controls the maximum buffer and next chunks’ bitrate (§IV).
To make DeepBuffer practical, we make several contributions,
including NN’s inputs, actions, as well as training method-
ologies. Firstly, beyond ABR’s conventional metrics such as
playback statics and video information, we further incorporate
buffer preference, including current maximum buffer size and
buffer weight, into the NN’s input. Here the buffer weight ω
is allowed to be dynamically adjusted w.r.t users’ preference.
For example, ω = 0 means the user aims to achieve the
highest QoE while paying little attention to the data wastage.
Secondly, we design DeepBuffer’s policy network with two
outputs to decide bitrate action and max buffer action sepa-
rately. Such settings can effectively reduce the action space
for bootstrapping training. Thirdly, considering the diversity
of video bitrate ladders, we propose a novel bitrate selection
policy that can support the videos in the different number
of bitrate levels with various encoded bitrate settings. In
detail, we apply a gradient-based action mask behind the
final output of the NN’s bitrate selection layer, aiming to
filter invalid actions that do not exist in the current bitrate
ladder (§IV-C). Finally, to train DeepBuffer, we implement a
novel sample-efficiency DRL method called Dual-Clip Phasic
Policy Gradient (DCPPG). It combines several state-of-the-
art on-policy DRL techniques, such as Dual-clip restriction
algorithm [18] and auxiliary phasic policy method [19].
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Fig. 1. This group of pictures shows that the increased traffic bandwidth and everhigher compression efficiency result in the data wastage effect. The effect
is becoming increasingly urgent in UGC-like services, since users often stop watching videos unexpectedly, then video data is lost in such sessions.

We evaluate DeepBuffer with diverse video content and
several real-world traces collected from various network con-
ditions, categorized into slow-network, medium-network, and
fast-network paths (§V). We first compare DeepBuffer in
different buffer weights with state-the-art ABR algorithms in-
volving heuristics, learning-based and wastage-based schemes.
With trace-driven analysis, DeepBuffer shows its outstanding
abilities in balancing QoE and buffer size, not only outper-
forming existing schemes by 1.8%-34.4% in terms of QoE
over slow-network paths but also heavily reducing the buffer
size up to 90% over fast-network paths. Next, DeepBuffer
illustrates its high generalization abilities to varying multiple
videos, where the videos have multiple types, pre-chunked
with different bitrate ladders. Finally, we validate DeepBuffer
over real-world network scenarios. Extensive results indicate
the superiority of DeepBuffer against existing state-of-the-art
approaches. In summary, our contributions are the following:
• We show how the data wastage problem affects today’s ABR

algorithms and how to solve it via buffer-aware adaptive
video streaming. Then we address challenges to make the
DRL-based scheme more practical (§II).

• We meticulously design the proper mechanism and train
DeepBuffer with tailored NN architecture and methodolo-
gies (§IV).

• We comprehensively validate DeepBuffer with various
videos and network settings, demonstrating multidimen-
sional benefits of DeepBuffer in terms of QoE and buffer
size (§V).

II. BACKGROUND AND MOTIVATION

A. Related Work

The history of ABR starts with heuristic methods. FES-
TIVE [20] and PANDA [7] make bitrate selection by es-
timating future throughput. BBA [8] and BOLA [9] are
proposed to select bitrates w.r.t current buffer sizes. Then
model-based approaches like MPC [14] leverage an offline
ABR model for making decisions over a horizon. Altough
several attempts [10], [12], [21] have been made to optimize

the ABR algorithm based on various deep learning or RL
methods, the above schemes seldom consider the data waste
caused by unnecessary buffer accumulation.

The data-wastage effect has already been found for about
one decade [3], [22], [23]. Especially, Plissonneau et al. [22]
shows that recent ABR policies may lead to a large number
of wasted bytes if the bandwidth is large enough. While in the
past ten years, very little work has focused on solving such
a dilemma. PSWA [24] is a wastage-based ABR algorithm
for mobile video streaming. It controls the buffer solely
with the offline trained configure map. Different from PSWA,
DeepBuffer uses an NN-based policy to control both bitrates
and maximum buffer with all considered metrics (§IV).

B. Motivation

We start by investigating how the buffer size influences
traditional adaptive video streaming over today’s network
conditions. Figure 1(a) shows the explosive growth in network
capacities in the past five years. As shown, almost 30×
improvements in terms of the average bandwidth, ranging from
1.2 Mbps [25] to 300 Mbps [26]. However, Figure 1(b) shows
encoding bitrate vs. PSNR (peak signal-to-noise ratio) plots
for several generations of codec of two families – H.26x stan-
dards [27], [28], [29] and VPx groups [30], [31], [32]. We use
a music video ([33], §V-A) with 4K resolution. Surprisingly,
results indicates that the VP8 [30] and VP9 [31] can provide
excellent quality at HD bitrates (6Mbps), as the latest advanced
codecs such as AV1 [32] and H.266 [29] even performs well
at SD bitrates (1.1Mbps) [34]. Thus, following the growth
of compression efficiency, before ultra-video streaming like
point-cloud and cloud-gaming becomes mainstream, conven-
tional adaptive video streaming doesn’t require rate adaptation
logic over such increased traffic bandwidth – we can blindly
pick the chunk with the highest bitrate throughout the entire
session, and still, no stall events occur.

While beyond the sufficient bandwidth and better compres-
sion efficiency, we find that modern ABRs heavily suffer from
data wastage problems. Specifically, ABRs often obey the
“immediate download principle” that immediately downloads
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(c) Fast-network path.

Fig. 2. DeepBuffer is buffer-aware that not only picks excellent chunks for avoiding stalling but also focuses on reducing buffer occupancy in all considered
network environments. Note the different behaviour of DeepBuffer in different types of network conditions, i.e., slow, medium and fast.

the next chunk once the previous chunk has been down-
loaded [35]. Nevertheless, due to the overuse of the buffer, the
client will not properly play all the video chunks downloaded
if users leave prematurely, and eventually, resulting in the
data wastage [20], [23]. We report user’s measurement on
Kuaishou [36], which covers over 100,000 unique videos
with at least 3-minute duration. We find that almost 96% of
videos have a duration of less than 10 minutes and 60% of
videos perform less than 5 minutes (see in Figure 1(c)), while
video completion rates are decreasing as the video duration
increases (Figure 1(d)), from 12% for 3-minute videos to 5%
for 12-minute videos. In other words, more than 92% of the
users have never watched the end of the video. What’s worse,
more than 85% of the viewers have only watched less than
half of the videos. Meanwhile, at the chunk level, Figure 1(e)
shows that users will leave at any chunk and it’s not related
to the buffer occupancy.

Further, we conduct several experiments to verify the re-
lationship between Quality of Experience (QoE, typically
QoElin [14]) and buffer occupancy of four popular ABRs
over the network with an average bandwidth of 1-15Mbps.
We use an HD video encoded by the maximum bitrate of
4.3 Mbps [37]. Figure 1(f) shows the average buffer size of
each ABR algorithm starts to increase once the bandwidth
is larger than the maximum encoded bitrate of the video.
However, the increased buffer size doesn’t actually improve
QoE. Figure 1(g) shows that most ABR algorithms have
achieved their optimal QoE value when the bandwidth reaches
over 1.5× of the highest video bitrate. Hence, the client’s
buffer will be wasted if the bandwidth is sufficient for picking
the highest bitrates, leading to unnecessary data costs.

To better understand how much buffer ABR algorithms
waste in the video on demand (VOD) streaming, we measure
the optimal buffer for each ABR scheme over different band-
widths and report the results curve in Figure 1(h), where the
optimal buffer is the offline minimum buffer for keeping the
optimal QoE score for each chunk. As expected, each algo-
rithm shows a different optimal buffer under each bandwidth.
The key reason is the value of the optimal buffer heavily
depends on the strategy of ABR algorithms. For example,
heuristics such as rate-based and buffer-based approaches
either neglect or only consider buffer occupancy, which results
in a relatively stable trend in the choice of the optimal buffer.
By contrast, model-based and learning-based approaches such

as RobustMPC and Pensieve use complex decision policies
according to past throughput, buffer, and chunk size, which
finally ramps down the optimal value slowly.

In summary, due to the rapid increases in traffic bandwidth,
improvements in video compression efficiency, and diversity
of user behaviors, it’s critical to design a proper mechanism for
avoiding data wastage, especially for videos with a duration
of 3 to 10 minutes.

III. METHODS

A. Joint buffer control and rate adaptation

To tackle the observation above, an intuitive idea of avoid-
ing data wastage is to separate the rate adaptation scheme
and the download scheduling scheme, just like PANDA [7].
Nevertheless, in the previous section (§II-B) we have shown
that each ABR algorithm has its own optimal scheduling
policy. In this work, we propose the concept of buffer-aware
adaptive video streaming. Different from recent buffer-based
approaches [8], buffer-aware ABR joints scheduling and rate
adaptation scheme in one step. We schedule the next chunk’s
download time by controlling the maximum buffer size.

Figure 2 demonstrates the design principle of buffer-aware
adaptive video streaming, which is absolutely different from
previous work. In the slow-network path (Figure 2(a)), we do
not have to adjust the maximum buffer, as the ABR policy can
naturally preserve its buffer size while providing high QoE. In
the medium-network path (Figure 2(b)), we partially control
the maximum buffer and keep the current buffer within a
proper range to avoid unnecessary data wastage during the ses-
sion. Such scenario enables the algorithm to make quantizing
and scheduling decisions just like PANDA [7]. Alternatively,
since the bandwidth is quite sufficient in the fast-network
path (Figure 2(c)), the maximum buffer controller dominates
the process that entirely sets the buffer as the minimum buffer
size. Most of the time, the download module is worked in
idle states, receiving intermittent bandwidth information for
estimation. To that end, both ABR policy and buffer control
algorithm is non-trivial for buffer-aware ABR algorithm.

B. Buffer-aware rate adaptation model

We formally model the buffer-aware ABR. In the typical
ABR video streaming, the videos are pre-chunked into a series
of chunks, each of which is segmented as the same video time
of L seconds. Assuming that there are M bitrate levels for a



video with the bitrates of R = {R1, R2, . . . , RM}. Let Bt be
the buffer occupancy at the start of downloading chunk t, Rt

represent the selected video bitrate, Ct as average throughput
measured, dt(·) is the video chunk size for bitrate Rt.

Now, considering the maximum buffer size Bmax
t as another

policy that can be adjusted for chunk t, we extend the
traditional process as buffer-aware adaptive video streaming.
The buffer occupancy of the next chunk Bt+1 can be con-
cluded as Eq. 1. When the current buffer size has reached
or “overflowed” Bmax

t , the player will wait for the buffer to
drain to a certain level which the next chunk t + 1 could be
downloaded.

Bt+1 = min(

(
Bt −

dt(Rt)

Ct

)
+

+ L,Bmax
t ). (1)

By using this mechanism, the video player can “postpone”
for a while to download chunks and, in turn, actively pick them
at any time in the future. Such operations enable the players to
maintain the current buffer level to avoid unnecessary playback
buffer wastage. Further, we formulate the buffer-aware ABR
problem as a multi-objective optimization problem, i.e., the
combination of QoE maximization and buffer minimization
problem, listed in Eq. 2, where δut represents the additional
waiting time caused by Round-Trip-Time (RTT), render time,
and especially, the maximum buffer threshold.

max
R1,...,RN ,Ts

∑
t

QoEN
t , min

Bmax
t ,Ts

∑
t

Bt (2)

s. t. ut+1 = ut +
dt(Rt)

Ct
+ δut, (3)

Ct =
1

ut+1 − ut − δut

∫ ut+1−δut

ut

Cndn, (4)

Bt+1 = min

[(
Bt −

RtL

Ct

)
+

+ L− δut, B
max
t

]
, (5)

Rt ∈ {R1, R2, . . . , RM}. (6)

Here we consider the buffer-aware ABR composition as
the multi-objective optimization problem. In common, multi-
objective optimization problems have no single solutions but
a set of so-called Pareto-optimal solutions, which means none
of the objective functions can be improved without degrading
some of the other objective values. The set of Pareto-optimal
solutions represents the tradeoffs according to all objective
functions. Solving such multi-objective optimization means
finding all the possible solutions.

C. Challenges for DRL-based approaches

We straightforwardly convert multi-objective optimization
to single-optimization via the traditional method, namely sim-
ple additive weighting (SAW) [17]. The surrogate objective
function is listed in Eq. 7, in which ω means how much
the function is influenced by the buffer occupancy. Larger ω
indicates that the ABR policy pays more attention to lower the
buffer rather than preserving QoE performance, vice versa.

max
R1,...,RN ,Bmax

t

∑
t

QoEN
t − ωBt (7)

DeepBuffer
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Fig. 3. A high-level perspective of DeepBuffer. Different conventional ABR
algorithms, buffer-aware ABRs both select proper bitrate and manage buffer.

Taking the objective function as a reward signal, we
can leverage the state-of-the-art deep reinforcement learn-
ing (DRL) method to generate ABR algorithms since the prob-
lem naturally falls into the scope of DRL. However, directly
using the DRL method to solve the problem is impractical.
We have to face several key challenges:
▷ “Infinite” possible objectives. Single-objective optimiza-

tion only provides a single execution plan instead of all
possible Pareto-optimal plans that exhibit the tradeoffs be-
tween the different plans. While in our buffer-aware ABR
setting, there are infinite possible sets of plans, which become
intractable. Thus, how to efficiently obtain all the solutions
without exploring the whole objective space?
▷ Varying multiple videos. The buffer control strategy is

highly influenced by the ratio between maximum bitrate and
current throughput measured. Unfortunately, recent learning-
based ABR schemes only support one bitrate ladder set-
ting [12], [11], or vary all combinations of the ladders that
only cover the entire DASH video list [10]. Hence, how to
help learning-based ABRs tame the videos in such “real” yet
multiple bitrate levels?
▷ Learning policies in complex action spaces. Besides, the

action spaces contain two sub-actions, i.e., bitrate action and
maximum buffer action. They perform independently. So how
to let the learned ABR take the two actions effectively?

Putting them together, we have to i) implement sophisticated
NN architecture for fulfilling variable feature inputs, ii) design
adequate training methodology, and iii) propose a novel DRL
algorithm that can provide greater sample efficiency in com-
parison to existing algorithms.

IV. DEEPBUFFER DESIGN

To face the challenges above, we present DeepBuffer, a
novel neural buffer-aware ABR algorithm. The big picture
of DeepBuffer is demonstrated in Figure 3. Upon receiving
the state representation, DeepBuffer adopts a NN to pick the
proper bitrate and set the maximum buffer for the next chunk.
In this section, we describe DeepBuffer’s NN inputs, outputs,
architecture, and training methodology.

A. NN overview

State. As shown in Figure 4, for each chunk t, the state input
st is defined as: st = {Nt, Vt, ω}, where Nt means video
playback statics, Vt is the video content metric, and ω controls
buffer preference metrics.
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▷ Video playback statics Nt. We take four critical metrics
for describing the video playback status. The metric includes
past bitrate selected qt, current buffer occupancy bt. Mean-
while, it also contains two sequences, i.e., past k chunks’
throughput measured Ct = {ct−k+1, . . . , ct} and download
time mt = {mt−k+1, . . . ,mt}. All the metrics have been
normalized within a proper range. We set k=8 [10].

▷ Video information Vt. DeepBuffer directly takes the
average bitrate of each bitrate level as the video information.
Different from previous work, we collect numerous “real
videos” as the video set but instantly generate the “fresh
video” with the video generator during training. The videos
are chunked as four seconds [10], [38], [12]. Details of the
video generator please check §V-A.

▷ Buffer metric ω. In practice, users and content providers
may have different requirements for balancing QoE and buffer.
For instance, some providers prefer high QoE services without
considering the buffer wastage (i.e., ω = 0), while others
prefer fixing the maximum buffer size into a lower value to
limit the overall bandwidth cost (i.e., ω = 1). To express such
application requirements, we take the current maximum buffer
occupancy Bmax

t and buffer weight ω into the state.
Actions. With the state st, the agent synchronously takes
two actions, i.e., at and bt, in which at is the next chunk’s
selected video bitrate and bt reflects the next chunk’s “relative”
maximum buffer size (seconds). The maximum buffer size is
updated as Eq. 8. We discuss DeepBuffer with different types
of action spaces in §V-E.

Bmax
t = Bmax

t−1 + bt, b ∈ {−10,−5, 0, 5, 10}(seconds). (8)

Reward. We set Eq. 7 as the DeepBuffer’s reward function.
Note the function is dynamically parameterized by the buffer
weight during training. Such settings enable agents to better
understand the correlation between the strategy and the re-
quirement.
Architecture. The DeepBuffer’s NN is composed of an actor
network θ and a critic network θv . The actor network outputs

the probabilities of bitrate action πa
θ and maximum buffer

action πb
θ. The critic network outputs the value of the current

state Vθv .
▷ Actor network. The DeepBuffer’s actor network includes

bitrate action, max buffer action, and the auxiliary value.
All three actions and value uses a shared network to extract
features from the given state. In detail, the actor’s shared
network adopts three 1D-convolution (Conv-1D) layers with
feature number=128, kernel size=1 to extract the features from
throughput, download time, and bitrate levels. The rest of the
metrics are passed to five fully-connected (FC) layers with
the same shape of 128 neurons. The resulted features are
concentrated into a shared vector. For outputting the bitrate
action, we use another FC layer with 128 neurons to down-
sample the result of the shared network. The result of the
layer then passes to an FC layer with the neuron number of
|A|, which is the maximum dimension of the bitrate action.
No active functions are applied. Here we treat the output
as m. Due to the variable video bitrates and video count,
we then apply an action mask to filter invalid actions. The
mask can be implicitly estimated from video content features
Vt = {v0t , . . . , vit, v

|A|
t } because we have already set the invalid

indices to -1 w.r.t the bitrate level. Assuming I(·) as a binary
indicator, at can be sampled from the probability:

ai ∼
I(vit > 0)emi∑

j∈|A| I(v
j
t > 0)emj

. (9)

Note that the standard backpropagation of the gradient in
the NN still holds [39]. For representing the maximum buffer
action, we take an |B|-dim vector with Softmax function after
another feature down-sampling layer with 128 neurons, in
which |B| is the count.

Moreover, we output a single scalar named auxiliary value.
The auxiliary value is used purely to train representations for
the policy. It will be optimized by the auxiliary loss during
the auxiliary phase.
▷ Critic network. We implement a critic network to output

a value, which learns an estimate of the accumulate re-
ward (i.e., total value) and helps improve the total performance
of the actor network.

B. Policy optimization with DCPPG

We have to construct a more sample-efficient DRL algo-
rithm to tame the complexity of the buffer-aware ABR task
since the algorithm controls two actions with a variable action
space and a fixed action space. Inspired by the recent success
of auxiliary learning [19], we propose a novel DRL algo-
rithm, namely Dual-Clip Phasic Policy Gradient (DCPPG).
The DCPPG’s training process is mainly composed of the
policy phase and the auxiliary phase.

During the policy phase, we separately update the actor
network and the critic network. In detail, the loss function
of the DeepBuffer’s actor network is trained by Dual-Clip
Proximal Policy Optimization (Dual-PPO) [18], computed as
LPolicy (Eq. 10):

L
Policy = Êt[I(Ât < 0)max(LPPO, cÂt) + I(Ât ≥ 0)LPPO] (10)

Here I(·) is a binary indicator function, LPPO (Eq. 11) can
be viewed as the surrogate loss function of the vanilla PPO,



ρ(πθ) (Eq. 12) reflects the joint probability ratio of πa
θ and

πb
θ, Ât (Eq. 13) is the advantage function that is learned by

bootstrapping from the current estimate of the value function,
and γ=0.99 represents the discounted factor. Briefly, the Dual-
clip PPO algorithm adopts a double-clip method to restrict
the step size of the policy iteration and update the NN by
minimizing the clipped surrogate objective. ϵ and c are hyper-
parameters that control how to clip the gradient. By default,
we set ϵ = 0.2, c = 3 [18].

L
PPO = min

[
ρ(πθ)Ât, clip

(
ρ(πθ), 1± ϵ

)
Ât

]
(11)

ρ(πθ) =
πa
θ (at|st)

πa
θold

(at|st)
· πb

θ(bt|st)
πb
θold

(bt|st)
(12)

Ât = rt + γVθv (st+1)− Vθv (st) (13)

Moreover, the parameters of the DeepBuffer’s critic network
θv are updated by minimizing the error of Ât.

∇L
π = −∇θ

[
L

PPO(πa
θ , π

b
θ, Ât) + λHθ(st)

]
+∇θv [At]

2 . (14)

We summarize the loss function Lπ in Eq. 14. In addition,
we add the entropy of all the policies Hθ(st) into the loss
function to encourage exploration feedback, where λ is the
entropy weight. Considering that on-policy RL is sensitive to
the entropy weight [38], we adjust the entropy weight λ to
minimize the gap between the current entropy and the target
entropy Htarget. Here, we set Htarget = 0.1 [40].

During the auxiliary phase, we further optimize the actor
network according to the joint objective function Ljoint which
includes behavioral cloning loss and an arbitrary auxiliary
value loss:

L
joint =Êt

[
KL

(
πa
θold(st), π

a
θ (st)

)
+KL

(
πb
θold(st), π

b
θ(st)

)]
+ Êt

[
1

2
[Vtarg(st)− Vθ(st)]

2

]
.

(15)
Here KL(·) is the behavioral cloning loss, representing

the KL-divergence between the original policy (i.e., πa
θold

,
πb
θold

) and the updated policy (i.e., πa
θ , πb

θ). Please note that
the original policy here is the policy after the ending of the
previous policy phase and just right before the beginning of
auxiliary phase. The rest part of Eq. 15 is an auxiliary value
function that minimizes the gap between target value Vtarg(st)
and the auxiliary value Vθ(st), in which the target value is
estimated by the combination of reward for the current state
st and the value of the critic network for the next state st+1:
Vtarg(st) = rt + γVθv (st+1).

C. Training methodology

Alg. 1 presents the main phases for training DeepBuffer.
Phase 1: randomizing environments. The first phase

proposes a randomized environment generator that fully con-
siders the diversity requirements in terms of video bitrates,
network information, buffer weights, etc. Specifically, we first
randomly initialize the “fresh videos” with the video generator,
as each video contains 2-6 bitrate levels. Next, we uniformly

Algorithm 1 DeepBuffer Training Process
import random
network_pool = load_trace()
while not converge:

#Phase 1: randomize environments
#video count
count = random.choice([2, 3, 4, 5, 6])
#randomize bitrate ladders: 100-7000kbps
video = sorted(random.uniform(100, 7000, count))
size = video_generator(video) (§V-A)
#randomly pick a network trace
n_info = random.choice(network_pool)
#randomize buffer weight
ω = random.uniform(0, 1)
#Phase 2: rollout policy
#array: state, bitrate, buffer, reward
S, A, B, R = rollout(video, size, ω, n_info)
#Phase 3: training with DCPPG
for _ in range(Npolicy):

Optimize θ, θv according to Lπ(Eq.14)
πa
old, πb

old = predict(S)
for _ in range(Naux):

Train θ, θv using Ljoint(Eq.15), πa
old, and πb

old.
λ += α(Htarget −Hθ(st)) # Update entropy weight

pick a trace from the network dataset. Finally, we randomize
the weight ω to demonstrate the buffer requirement.

Phase 2: rollout policy. In this phase, we encapsulate the
buffer-aware ABR-process into a gym-like [41] environment,
which allows the agent to learn the policy effectively.

Phase 3: training with DCPPG. The actor network and
the critic network are repeatedly and iteratively optimized by
different objective functions in the policy phase and auxiliary
phase. Here note that the old policies of bitrate πa

old and buffer
πb
old should be estimated again just before the auxiliary phase

starts. Now we briefly introduce the role of each hyperparam-
eter. Npolicy is the number of policy updates performed in
each policy phase. Naux controls the sample reuse during the
auxiliary phase. We set Npolicy=5, Naux=6 with consistent of
the original PPG paper [19].

V. EVALUATION

A. Methodology

Experimental Setup. We employ trace-driven simulation with
virtual player [42] and real-world evaluation (§V-F). We
modify the player to enable maximum buffer adjustment. Each
experiment runs for all segments in the video emulated over
network traces.
Video generator. We propose a video generator that enables
diverse videos with different encoding bitrates during training.
Specifically, we select 86 videos from YouTube, which in-
volves movies, sports, games, news, and MVs, and encode the
video by H.264 codec according to the nine fixed bitrates and
segment it into 4-second chunks. During training, we randomly
initialize a bitrate ladder with the bitrate range from 100 to
7000 kbps in 2-6 levels. Then the video size can be estimated
by the piece-wise linear-regression method – It’s simple yet
effective, as the proposed generator performs at least 15,000×
acceleration with an accuracy of 98.83%.
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Fig. 5. Comparing DeepBuffer with recent ABR algorithms on the QoElin over the HSDPA dataset. Error bars show 95% confidence intervals.

Video Test Sets. We adopt three video sets with different
types of bitrate ladders for testing. i) EnvivioDash3 [37]: the
DASH.js [43] reference video which is encoded by six bitrates
in the range of {0.3, 0.75, 1.2, 1.85, 2.85, 4.3} Mbps. ii) Tears
of Steel [44]: a short science fiction film encoded as {0.35, 0.6,
1, 2, 3}Mbps. iii) WA DA DA [33]: a K-pop music video (MV)
proposed by Kep1er. The video is encoded as {0.4, 1, 3,
6}Mbps. All videos are encoded by the H.264 codec [27].
Network Trace Datasets. We use Puffer public dataset [13],
which involves over 50,000 network traces, for training.
Meanwhile, we organize recent public datasets into three
categories for testing: i) slow-network paths (≤6Mbps), in-
cluding HSDPA [25] and FCC [45]; ii) medium-network
paths (≤100Mbps), containing Oboe [38] and FCC-18 [46];
iii) fast-network paths (>100Mbps), 5G [26].
QoE Metrics. In this paper, we employ two QoE metrics. The
first is QoElin [14], [38], [10], [13], the vanilla linear mapping
function:

QoElin =

N∑
n=1

q(Rn)−max q(R)

N∑
n=1

Tn−
N−1∑
n=1

|q(Rn+1)− q(Rn)| ,

(16)
where N is the total number of chunks, Rn means the chunk
n’s video bitrate, Tn is the rebuffering time, max q(R) means
the maximum bitrate of the bitrate ladder, q(Rn) is a function
that maps the bitrate Rn to the quality perceived by the
user. Here we set q(Rn) = Rn since it effectively helps us
analyze several underlying QoS metrics, such as bitrate, stall,
and smoothness. Ideally, we can use any form of perceptual
measurement, such as SSIM [13] and VMAF [12], [21].

The second is QoEitu, which is calculated by ITU-T
Rec P.1203 [47]. We select QoEitu since it’s a parametric
bitstream-based quality assessment standard.
ABR Baselines. In this work, we select several repre-
sentational ABR algorithms from various type of fun-
damental principles. For recent heuristics, we select the
following ABR algorithms, marked as blue: i) Buffer-
based Approach (BBA) [8]: a vanilla buffer-based ap-
proach; ii) BOLA [9]: the standard ABR scheme which
solves the ABR problem by the Lyapunov function; iii) Ro-
bustMPC (RMPC) [14]: a model-based method by predicting
key environment variables over a moving look-ahead horizon.

Learning-based ABR baselines includes (marked as
gray): iv) Pensieve [10]: the vanilla DRL-based ABR scheme.
We use the pre-trained model; v) Comyco [12]: a quality-aware
imitation learning-based ABR scheme. We retrain it with
QoElin; vi) Fugu [13]: a hybrid ABR algorithm that adopts
deep neural network (DNN) to predict the download time for
the next chunk and uses vanilla MPC to make decisions.

In addition, we also consider prior wastage-based ABRs
as the baselines, including vii) Pensieve-ω: a hybrid scheme

that takes Pensieve as the basic ABR algorithm and uses a
learned policy to control the maximum buffer. The policy is
trained via maximizing Eq. 7. viii) RobustMPC-ω: a heuristic
that considers all the possible bitrate-buffer action pairs and
maximizes QoE over a horizon of future five chunks like MPC.
This scheme can be regarded as the upper bound of heuris-
tics to deal with the buffer-aware adaptive video streaming
problem. ix) PSWA [24]: a closest scheme compared with
DeepBuffer. PSWA is the wastage-based ABR scheme that
adjusts the buffer via a configured map, in which the map is
pre-trained based on the epsilon-constraint method [48] and
only takes past throughput as the input.
Implementation. DeepBuffer’s training tools are built with
TensorFlow 2.8.1 [49]. We set |A|=6 (i.e. max. six bitrate
levels), |B|=5, learning rate α = 10−4, and train the model
with QoElin. Note, §V-D shows QoEitu results.

B. DeepBuffer vs. existing ABR algorithms

In this part, we leverage trace-driven simulation to compare
the performance of DeepBuffer against several existing ABR
algorithms over various kinds of network types, including
slow-network (HSDPA [25]), medium-network (FCC-18 [46]),
and fast-network (5G [26]) paths. During the experiment, we
only utilize the same trained model and set ω = 0.1, 0.6, 0.9,
i.e., DeepBuffer-ω. Results are tested over the Envivio video
set and summarized as QoElin (§V-A). We discuss DeepBuffer
with different ω in §V-C.
Slow-network paths. In Figure 5(a), DeepBuffer-0.1 achieves
the best scheme on the slow-path network condition, with
the improvements on average QoE of 1.8% (Comyco) -
34.4% (BBA) compared with existing ABRs. Meanwhile, we
find that DeepBuffer-0.6 and DeepBuffer-0.9 not only gain
acceptable overall performance but also reduce the average
buffer size. As shown, DeepBuffer-0.6 rivals BOLA and Fugu
on average QoE but heavily decreases 23.9% on BOLA
and 39.6% on Fugu, respectively. Meanwhile, DeepBuffer-0.9
improves 21.8% on QoE compared with BBA, and it reduces
11.6% on buffer size.

Moreover, we report the detailed metrics on slow-network
paths in Figure 5(b) and Figure 5(c). The results contain
various critical metrics, such as average bitrate, stalling ratio,
and average bitrate change (i.e., smoothness). Note the right
top region of the figures is the desired operation region for
any scheme. As shown, we claim that DeepBuffer’s superior
performance is due to its better understanding of the shape of
the Pareto frontier, since DeepBuffer with various ω always
performs in a Pareto optimum state when no bitrate or stall
changes can make one individual better off without making
at least one other individual worse off. Similarly, DeepBuffer
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Fig. 6. Comparing DeepBuffer with recent ABR algorithms on the QoElin. Results are collected on the FCC-18 dataset.
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Fig. 7. Comparing DeepBuffer with recent ABR algorithms on the QoElin. Results are collected on the Lumos-5G dataset.

also maintains its competitiveness in terms of the smoothness
metric, which stands for the Top-2 scheme when ω=0.1.
Medium-network paths. We analyze the behavior of Deep-
Buffer and baselines over the FCC-18 network dataset. The
dataset contains various network conditions, which can be
viewed as nowadays’ network. From Figure 6(a), we ob-
serve that existing learning-based approaches suffer from data
wastage, which often leverages an additional 1.5× (Pensieve),
1.7× (Fugu), and 2.8× (Comyco) on buffer size compared
with DeepBuffer for achieving similar results on QoE. By
contrast, comparing DeepBuffer with recent heuristics such
as BBA and BOLA, we can see that DeepBuffer-0.1 improves
the average QoE by 13.6% on BOLA and 22.7% on BBA
with almost the same average buffer occupancy. The only
exception is RobustMPC: it performs almost equal to Deep-
Buffer, obtaining the Top-3 scheme in medium-network paths.
Meanwhile, through analyzing the detailed results plotted in
Figure 6(b) and Figure 6(c), we find that DeepBuffer with all
considered weights can reach higher bitrate but fewer bitrate
changes compared to baselines, while they work slightly worse
in terms of stalling ratio, with the relative degradation of
0.07% (ω=0.1)-0.2% (ω=0.9) compared with Comyco.
Fast-network paths. Figure 7 shows the results from perform-
ing ABR algorithms on the 5G dataset. Here we illustrate the
huge data waste of prior work in Figure 7(a). We reason that
in the current network scenario, the bandwidth is sufficient
for ABRs to pick chunks with the highest bitrate, while
such schemes lack buffer control strategies like DeepBuffer,
immediately downloading the chunk once the previous down-
load process ends. In contrast, DeepBuffer picks the proper
bitrate with preserving current buffer occupancy via buffer
action (§IV-A), significantly reducing the average buffer size
by 90.7% – an impressive number.

C. DeepBuffer vs. wastage-based schemes

We vary a set of buffer weights ω, sweeping from 0 to 1,
to investigate the impact that each has on QoElin and buffer
size. The wastage-based ABR algorithm includes Pensieve-
ω, RobustMPC-ω, and PSWA. Results show DeepBuffer’s
outstanding generalization ability. Figure 5(d) indicates that
DeepBuffer outperforms other schemes on slow-network paths
since it reaches the highest QoE with the same buffer size.

In turn, we see that Pensieve-ω fails to handle such diverse
requirements on the buffer weight. That’s because Pensieve-
ω only adjusts the maximum buffer action solely, and it
doesn’t jointly consider the comprehensive effect brought by
buffer and bitrate action. Same observation can be resulted in
medium-path (Figure 6(d) and fast-network paths (Figure 7(d))
as well. Furthermore, RobustMPC-ω does consider both bi-
trate selection and buffer adjustment. It behaves better than
Pensieve-ω in slow and medium-network paths, but its perfor-
mance degrades heavily when the throughput predictions are
incorrect in fast-path network scenario (Figure 7(d), [50]). In
particular, comparing DeepBuffer with PSWA, we observe that
DeepBuffer can generalize to different network environments,
with the improvements on average QoE values within 17.4%-
31.3% on slow-network paths, 6.5%-7.0% on medium-network
paths, and 5.1% on fast-network paths respectively. In the
meantime, compared with PSWA, DeepBuffer starts saving the
buffer size when ω=0.4 on the slow-network paths. We reason
that PSWA controls the maximum buffer by only considering
average throughput, which not only lacks the feature selection
but also neglects the influence on bitrate actions.

D. DeepBuffer with different bitrate ladders

To validate the generalization of DeepBuffer, we conduct
an experiment to test ABR schemes with two kinds of videos
encoded by various bitrate ladder settings and report the
main results in Table I. The selected video sets are Tears
of Steel (ToS) [44], a short movie, and WA DA DA [33],
a music video. We take DeepBuffer with ω=0, 0.5, and 0.7
for comparison. We don’t compare Comyco and Pensieve in
this part since they are not naturally designed to vary such
multiple videos. Different from the previous experiment, we
adopt O.46 score [47], which is the media session quality score
in QoEitu [51], to evaluate QoE. Previous work demonstrates
that compared with QoElin, QoEitu can better reflect the
subjective quality evaluation of ABR.

As expected, DeepBuffer maintains good QoEitu on two
different kinds of videos. Among them, DeepBuffer-0, the
scheme without considering the buffer sizes, ranks first in
three network-video pairs, as it performs only 0.5% less
than the best scheme on average QoEitu in the ToS-Oboe
scenario. Meanwhile, DeepBuffer-0.5 can balance the QoEitu



TABLE I
Results of DeepBuffer with different videos on FCC and Oboe dataset. QoE metrics are computed as QoEitu [47].

1st FCC [45] Oboe [38] FCC [45] Oboe [38]
2nd QoEitu (↑) Buffer (s) (↓) QoEitu (↑) Buffer (s) (↓) QoEitu (↑) Buffer (s) (↓) QoEitu (↑) Buffer (s) (↓)

BOLA 2.62±0.78 21.73±10.31 3.53±0.76 38.23±17.82 3.14±0.67 18.83±5.07 3.82±0.69 23.65±5.59

RMPC 2.84±0.61 18.32±10.93 3.68±0.71 33.56±19.79 3.31±0.57 23.04±9.72 3.93±0.62 21.98±8.83

Fugu 2.88±0.63 17.46±12.41 3.68±0.70 34.11±20.86 WA 3.25±0.58 25.33±14.18 3.89±0.63 24.79±10.68

ToS PSWA 2.64±0.48 10.89±3.40 3.40±0.71 10.30±4.02 DA 3.10±0.49 14.12±4.62 3.67±0.63 11.75±4.38

[44] DB-0 2.89±0.58 22.83±5.92 3.66±0.68 25.75±7.50 DA 3.33±0.61 28.09±6.37 3.94±0.60 25.96±7.38

DB-0.5 2.78±0.65 9.84±4.81 3.57±0.82 13.18±5.49 [33] 3.32±0.64 16.10±3.38 3.94±0.64 16.07±3.82

DB-0.7 2.78±0.51 6.73±3.73 3.44±0.79 8.95±4.27 3.11±0.64 9.10±4.69 3.80±0.73 11.73±5.05
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Fig. 8. Comparing DeepBuffer with other settings.

performance and buffer occupancy over all considered scenar-
ios. Especially compared with traditional ABR algorithms, it
achieves the best QoEitu value while saving at least 36.7%
on buffer size in the WA DA DA-Oboe scenario. Moreover,
DeepBuffer-0.7 surpasses PSWA over all scenarios, with the
improvements on average QoEitu up to 5%, as well as the
significant decrease in average buffer occupancy up to 61.8%.

E. Ablation studies

Different RL methods. We compare DCPPG (§IV-B) with
on-policy methods over a basic environment to prove its
sample efficiency. Applying such a “complex” DRL method
is not gilding the lily since Figure 8(a) shows the rapid learn-
ing efficiency of DCPPG. Technically, DCPPG rivals Dual-
PPO [18], and it improves the normalized QoE by 5.46%-
17.81% compared with PPO [52] and A2C [53].
Design of action space. Moreover, we compare different
designs of the action space, such as combined bitrate and
buffer space (i.e., |A| × |B|), and continuous buffer actions.
Figure 8(b) indicates that DeepBuffer with separated discrete
action space gains the best performance on normalized QoE.

F. Real-world experiment

Finally, we conducted an experiment to validate how Deep-
Buffer performs in the wild. Specifically, we custom a new
ABR rule on Dash.js [43] and play the video on Chrome
V100. Note the client’s buffer size can be easily adjusted by
Dash.js API. The considered network scenarios cover 4G sce-
narios collected in Beijing Subway, public WiFi scenarios, and
5G scenarios. Figure 9 reports the average QoElin value and
buffer size for each scheme over different network conditions.
Error bars span one standard deviation from the average. We
reveal that DeepBuffer-0.1 outperforms existing schemes in
terms of normalized QoE over all scenarios. In particular,
DeepBuffer-0.1 improves QoE by 4.7%-55.5% in comparison
to PSWA, RobustMPC, and Pensieve over metro networks.
Meanwhile, it also reaches small buffer sizes, saving up to 9×
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Fig. 9. Comparing DeepBuffer with recent ABRs in the real-world.

TABLE II
DeepBuffer meets congestion control algorithms

CCAs Metric Reno [55] Cubic [56] BBR [57]
DeepBuffer-0.1 nQoE/Buffer 0.52/0.15 0.57/0.10 0.81/0.08

in terms of average buffer. Moreover, Table II demystifies the
influence of leveraging different kinds of congestion control al-
gorithms (CCA) on DeepBuffer. Results are summarized as the
normalized QoE (nQoE) and buffer size. As shown, AIMD-
based schemes such as Reno and Cubic suffer from slow start
effects, leading to a low estimated bandwidth. In contrast,
pacing-based schemes like BBR performs much better than
AIMD-based ones. Thus, we argue that available throughput is
not independent of ABR algorithms. It can be further estimated
by other critical features such as downloading chunks and
CCAs [54]. We will discuss this interesting topic in the future.

VI. CONCLUSION

In this paper, we considered leveraging buffer-aware adap-
tive video streaming to overcome the increased data-wastage
problem caused by sufficient bandwidth resources and limited
bitrate improvements on videos. Modeling the task as multi-
objective optimization, we proposed DeepBuffer, a DRL-based
buffer-aware ABR scheme that considers varying multiple
bitrate ladders, We have constructed DeepBuffer’s training sys-
tem, including its NN architectures and methodologies. Using
a comprehensive trace-driven comparison of prior work and
real-world deployment, we have illustrated that DeepBuffer
can preserve the performance while reducing the buffer size
by up to 90%, significantly restraining the data waste.
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