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ABSTRACT

The leading adaptive bitrate (ABR) algorithm leverages
model predictive control (MPC) method to determine next
chunks’ video bitrate, while it heavily relies on the accuracy
of throughput prediction, which thereby fails to perform well
in all considered network scenarios. In this paper, we propose
DeepMPC, which enhances MPC via two deep learning-
based modules, i.e., DL-based Throughput Predictor (DTP),
which can precisely predict future bandwidth, and Discounted
Factor Optimizer (DFO), which estimates the prediction error.
Using trace-driven experiments, we illustrate that DeepMPC
outperforms existing ABR schemes in all considered network
conditions, with the improvements on average QoE of 5.91%
- 56.1%. Moreover, we implement DeepMPC in real-world
network environments and extensive experimental results
demonstrate the superiority of DeepMPC against existing
state-of-the-art approaches.

Index Terms— Adaptive Video Streaming, Model Pre-
dictive Control, Deep Learning, Reinforcement Learning.

1. INTRODUCTION

Internet video streaming and downloads will grow to more
than 82% of all consumer Internet traffic by 2022 [1]. Adap-
tive bitrate (ABR) video streaming, the method that dy-
namically switches download chunk bitrates for restraining
rebuffering events as well as obtaining higher video bitrates,
has become the popular scheme for providing video stream-
ing services with high quality-of-experience (QoE) to the
users [2]. Conventional ABR approaches consider the next
chunk’s video bitrate via only either current network sta-
tus [3, 4] or buffer occupancy [5, 6], which leads to obtain-
ing the sub-optimal result. Thus, MPC [7] selects the next
chunk’s bitrate based on jointly considering current buffer
occupancy and throughput prediction, which achieves state-
of-the-art schemes among traditional model-based ABR algo-
rithms. However, recent work shows that the MPC is entirely
limited by throughput prediction accuracy [7, 8] and the deter-
mination of discounted factor [9]. Specifically, MPC utilizes
the fixed rules, i.e., the harmonic mean of past throughput
measured, and past five chunks’ prediction error, to make
decisions, which will eventually fail to work well under all
network conditions. Thus, state-of-the-art ABR algorithm

Pensieve [10] adopts deep reinforcement learning (DRL) to
generalize an outstanding ABR policy from scratch. Never-
theless, despite the outstanding improvements that Al-based
schemes achieve, such methods are often modeled as a black
box, which has a lack of interpretability. Thus, we ask if
deep learning (DL) will assist MPC to perform better, and in
the meanwhile, MPC will also enhance the interpretability of
DL-based methods.

In this paper, we propose DeepMPC, an ABR approach
with the fusion of DL and conventional MPC method.
DeepMPC is composed of two modules for solving the
weakness of existing algorithm: i) DL-based Throughput
Predictor (DTP), the DL-based model that predicts future
throughput via a sequence of past network status; ii) Dis-
counted Factor Optimizer (DFO), which utilize A2C [11],
an efficient deep reinforcement learning (DRL) method, to
train a neural network (NN) from scratch for determining
the proper discounted factor based on current video player’s
status and past prediction error. Technically, we first collect a
corpus of network datasets including various network condi-
tions for training and validating DeepMPC. Then we leverage
a faithful offline ABR simulator to emulate various network
environments for training a high-performance DFO via DRL.
Finally, we merge these two schemes DTP+DFO to a novel
ABR algorithm, namely DeepMPC. To that end, unlike end-
to-end ABR scheme Pensieve, each module of DeepMPC has
a clear sub-goal that can be easily explained.

We evaluate DeepMPC and existing ABR schemes, in-
cluding learning-based ABR scheme Pensieve [10], model-
based ABR approach MPC [7], etc., on both offline ABR
simulator and real-world implementation. Trace-driven ex-
perimental results illustrate that DeepMPC outperforms the
off-the-shelp ABR schemes on all considered network con-
ditions, with the improvements on average QoE of 5.91% -
56.1%. Finally, we also validate DeepMPC in real-world net-
work scenarios. Results indicate that our approach improves
the average QoE of 10.56% compared with state-of-the-art
learning-based ABR scheme Pensieve. In general, we sum-
marize the contributions as follows: 1) To the best of our
knowledge, we are the first to use DL and DRL methods to
tap the potential for the MPC-based ABR algorithm. 2) We
show that the fusion of DL and MPC is not only more effec-
tive and interpretable but also achieves state-of-the-art perfor-
mance compared with existing algorithms.



2. RELATED WORK

In this section, we start by introducing the recent work of
ABR and the principle of MPC. We then figure out MPC’s
strengths and weaknesses. Finally, we attempt to tackle the
problem via DL. Client-based ABR algorithms [2] are mainly
organized into two types: model-based and learning-based.

Model-based. The development of ABR algorithms be-
gins with the idea of predicting throughput [3]. PANDA [4]
predicts the future throughput for eliminating the ON-OFF
steady issue. FESTIVE [3] estimates future throughput via
the harmonic mean of the throughput measured for the past
five (or twenty) chunk downloads. However, due to the lack
of throughput estimation method currently, these approaches
still result in poor ABR performance. Most video client lever-
ages a playback buffer to store the video content downloaded
from the server temporarily. Thus, many approaches are de-
signed to select the appropriate high bitrate next video chunk
and avoid rebuffering events based on playback buffer size
observed. BBA [5] proposes a linear criterion threshold to
control the available playback buffer size. BOLA [6] turns
the ABR problem into a utility maximization problem and
solve it by using the Lyapunov function. However, the buffer-
based approach fails to tackle the long-term bandwidth fluc-
tuation problem. Then, mixed approaches, such as MPC [7]
and DynamicDASH [12], select bitrate for the next chunk by
adjusting its throughput discount factor based on past predic-
tion errors and predicting its playback buffer size. Neverthe-
less, these approaches require careful tuning because they rely
on parameters that are quite sensitive to network conditions,
resulting in poor performance in unexpected network envi-
ronments. What’s more, for tackling the problem, Akhtar et
al. [9] even propose an auto-tuning method.

Learning-based: Several attempts have been made to op-
timize the ABR algorithm based on the RL method due to the
difficulty of tuning mixed approaches for handling different
network conditions. Pensieve [10] is a system that uses DRL
to select bitrate for future video chunks. D-DASH [13] uses a
Deep Q-learning method to perform a comprehensive eval-
uation based on state-of-the-art algorithms, including both
heuristics and learning-based.
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2.1. MPC’s Background

As listed in Eq. 1, the key idea of MPC is to maximize QoE
of users via model predictive control method during the entire
session. For each video chunk k, MPC first uses a throughput
predictor to the estimate future bandwidth Cj. It then cal-
culates the proper video bitrate Ry according to C}, and cur-
rent buffer occupancy By, where Ry, can obtain the maximum
QoE of future five chunks. Ideally, the approach is simple
and straightforward, which achieves high performances with-
out data-driven methods. However, traditional MPC methods
have their drawbacks, which includes:

e Inaccurate throughput prediction.

The performance of ABR algorithms heavily relies on
the accuracy of throughput prediction, as harmonic
mean of past throughput observed cannot correctly
represent future network status, resulting in the fail-
ure of performances. Recent work [7] proves that
throughput prediction errors have a significant impact
on the performance of ABR algorithms. However, prior
work only leverages harmonic mean of past through-
put observed which lacks the precise prediction abili-
ties. Thus, we ask if deep learning can predict further
throughput more accurately than previous approaches.

e Imprecise discounted factor.

To counteract the prediction error affected by inaccu-
rate throughput predictor, RobustMPC adopts a dis-
counted factor «y to underestimate the throughput for
controlling the robustness of the predicted result [7].
In detail, RobustMPC estimate past k prediction error
for determining the current factor, which yields a reli-
able result. However, such heuristic methods require
careful tuning, which fails to provide high QoE in all
considered network conditions [10]. We, therefore, aim
to use deep reinforcement learning (DRL) to provide a
proper discounted factor ~y for any network status.

3. DEEPMPC DESIGN

Motivated by the recent success of DL on estimating fu-
ture bandwidth tasks [14], we propose DeepMPC, aiming
to leverage DL for accurately predicting future throughput,
so as to improve the overall QoE performances of MPC. As
shown in Figure 1, our approach picks the proper bitrate for
the next chunk & with the methods as follows: 1) DL-based
Throughput Predictor (§3.1), which utilizes DL to predict
future throughput Cj, from past throughput; 2) Discounted
Factor Optimizer (§3.2), which uses DRL to determine
the discount factor Afor chunk k, and calculates the final
throughput predicted Cy, = ~;, * C); 3) Conventional MPC
Model, which further computes best bitrate R, for the next
chunk.
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Fig. 1. An Overview of DeepMPC.

3.1. DL-based Throughput Predictor

The model will estimate throughput ¢y 1 of video chunk k+1
from the given time series of past throughput observed Cy.

Inputs & Outputs. The throughput predictor takes past
time ¢ chunks’ throughput vector Cy, = {cg_¢41, .. .,k } into
NN, where ¢; is the normalized throughput for video chunk <.
The predictor takes future p chunks’ average throughput as
the output, and the formulation is described in Eq. 2,
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in which S(R;) is the video size for bitrate R; of chunk ¢, ¢;
is the download time for chunk .

NN Architecture. The input first passes a 1D-CNN layer
with 64 filters, each of size 3 with stride 1. Next, it then passes
a fully connected layer with 32 filters. Finally, it outputs as a
single value of (0, 1),

Loss Function. We adopt mean square error (mse) to
evaluate the gap between value predicted y and the ground
truth .

Implementation. We use single GPU GTX1080Ti to train
our model, and our NN will converge within five epochs. We
use TensorFlow [15] to implement this architecture, in partic-
ular, we leverage TFLearn [16], a TensorFlow’s deep learning
library, to represent NN’s architecture. Besides, we set the
learning rate o = 0.0001 and training optimizer as Adam [17]
optimizer.

3.2. Discounted Factor Optimizer

As stated before, our goal is to determine a proper discounted
factor ~y; for chunk k based on future throughput predicted
C} and past status observed. Recent work [9, 8] assumed
that TCP connection throughput can be modeled as piece-
wise stationary process, where the network status is defined
as a tuple {u,0}. However, such handcrafted features will
cause bad performances when the network scenarios are in-
consistent with presumptions. Thus, in our study, we propose
Discounted Factor Optimizer (DFO), which uses DRL to de-
termine a proper discounted factor y for the given state. De-
tailing DFO’s system components, that include:

State. For each chunk &, DFO takes Sy, = {Cy, Ex, D}
as the input, in which CY, Ey, Dy are vectors that represent

past ¢ chunks’ throughput measured, throughput prediction
error and download time respectively. The throughput pre-

diction error is computed as Err = M, where pred
means the next chunk’s download througﬁffﬁt predicted by the
throughput predictor and real is the next chunk’s throughput
measured.

Action. In the traditional MPC method, the action space
of 3y, is continuous rather than discrete, while too large action
space will consume too much time for training. In this work,
considering the trade-off between NN’s convergence time and
performance, we pick 70 actions A = {0.1,...,1.0} to rep-
resent the DFO’s action.

Reward. we leverage QQoFEj;, as reward for optimizing
NN. Details are illustrated in §4.1.

NN Architecture. The DFO’s NN architecture is com-
posed of feature extraction layer, combination layer, and re-
gression layer. The NN first passes the state into the feature
extraction layer: for the input as a vector, it uses 1D-CNN
with stride=1, kernel=3, channel=128 to extract features; for
the input as a value, it leverages fully-connected with 128
neurons to ascension dimensions. Then the output of the ex-
traction layer is combined with the combination layer. Fi-
nally, the output is computed by a fully-connected with 128
neurons.

Training Methodology. We use A2C [11], a state of the
art actor-critic DRL algorithm, to train DFO. The critical
thought of the A2C is to optimize the NN parameter in the
direction of improving the average reward. For the more
specific theory of A2C, please refer to [11].

Implementation. We leverage an AWS in 20 cores to
train DFO, and the training time lasts almost 50 hours with
20 agents. We use TensorFlow [15] to implement DFO’s NN
architecture. Besides, we set the actor network’s learning rate
ag = 0.0001 , critic network’s learning rate o, = 0.001,
and entropy weight 8 = 5.0 down to 0.1 during the training
process, as suggested by the authors [9].

4. EVALUATION

In this section, we evaluate DeepMPC on both offline simu-
lation testbed and real-world network scenarios. Our results
answer the following questions:

1. Which is the best NN architecture for DTP? (§4.2)

2. Comparing DeepMPC with the state-of-the-art ABR
schemes, does DeepMPC stand for the best approach? (§4.3)

3. Does each module proposed in this paper improve the per-
formance of DeepMPC? (§4.4)

4. Last but not least, how does DeepMPC perform in real
network environments? (§4.5)



1 ABR Server .
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Fig. 2. DeepMPC’s Real-world Implementation

4.1. Implementation

> Experimental Testbed Setup. Our work is composed of
two experiments:

1) Trace-driven offline simulation. We use Pensieve
virtual player, a faithful ABR offline simulator, to evaluate
DeepMPC via network traces. The simulator is provided by
Mao et al. [18], which is written by Python2.7.

2) Real-world Deployment. Meanwhile, we also estab-
lish a client-server based full-system implementation. The
system mainly consists of a video player, an ABR server
and an HTTP content server. On the server-side, we de-
ploy an HTTP video server. On the client-side, we modify
Dash. js [19] to implement our video player client. Finally,
we implement DeepMPC as a service on the ABR server.
> Video Datasets. In this paper, we use EnvivioDash3 from
the DASH-246 JavaScript reference client [20], the same
video dataset commonly used in [10, 21, 9]. In details, the
video is encoded by the H.264 codec at video bitrates in the
range of {0.3, 0.75, 1.2, 1.85, 2.85, 4.3} Mbps. The total
length of the video is 193 seconds, which is divided into 48
chunks, where each chunk is 4 seconds.
> Network Trace Datasets. We collect network traces from
different public datasets for training and testing DeepMPC.
The traces contains HSDPA [22], FCC [23] and Oboe [24],
totally 40 hours.
> DTP’s Training Set. We randomly pick the next chunk
bitrate from the virtual player and store the information into
the dataset, where the dataset contains various network en-
vironments. We use 80% dataset for training and 20% for
validating.
> QoE Metrics. In this paper, we use the general QoE metric
QoEy;, [7,9, 10], the linear mapping formula which was used
by MPC [7], to evaluate existing ABR schemes:

Q0E=Y Ry—pY To—> |Ruj1—Ra|, )
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where N is the total number of chunks during the session, R,
represents the each chunk’s video bitrate, T;, reflects the re-
buffering time for each chunk n. We set p1 = 4.3 as suggested
by [10, 21].
> ABR Baselines. In this paper, we select several represen-
tational ABR algorithms from various type of fundamental
principles:

Rate-based [3]: uses harmonic mean of past five through-
put measured as future bandwidth.

Model
FCC HSDPA Oboe Size(MB)
Harmonic(Baseline) | 0.201 0.259 0.159 -
GRU 0.173 0.223 0.140 0.4
Fully-Connected 0.223 0.230 0.214 0.041
Hybrid 0.172 0.220 0.139 0.32
DTP(1D-CNN) 0.173 0.218 0.142 0.1

Buffer-based [5]: dynamically picks the next chunk bitrate
according to the buffer occupancy.

RobustMPC [7]: inputs the buffer occupancy and through-
put predictions, and then maximizes the QoE by solving an
optimization problem. In this experiment, we use the MPC
and RobustMPC implementation by ourselves.

Pensieve [10]: utilizes DRL to pick bitrate for next video
chunks. We use the pre-trained Pensieve model provided by
the authors [18].

4.2. DTP with other NN architectures

In this experiment, we aim to figure out the best network ar-
chitecture from DTP to the following architectures which are
listed as follows: Harmonic mean. The default throughput
predictor used by conventional MPC [7]; Gated Recurrent
Unit (GRU) [25]: uses double-layered GRU layers, whose
the number of hidden units is 64; Fully-Connected: a fully-
connected layer with 64 neurons; DTP: The NN used in this
work (§3.1); The fusion of DTP and fully-connected as well
as GRU approach.

We test the performance for each architecture via the
trace-driven simulator under different network data traces in-
cluding FCC, HSDPA and Oboe datasets. Results are summa-
rized as symmetric mean absolute percentage error (SMAPE),

which is computed as SMAPE = % Sy %, where
A; means the ground truth and Fj is the throughput predicted.

As demonstrated in Table 1 we find that DTP outperforms
the original harmonic mean method, with the improvements
on average accuracy of 13.93%, 15.83%, and 10.69% respec-
tively. Meanwhile, we observe that the other two NN architec-
ture, i.e., GRU and hybrid schemes also perform well. Con-
sidering the model size for each NN architecture, we find that
DTP achieves almost similar performances by using only al-
most 25% model size of the hybrid scheme.

4.3. DeepMPC vs. Existing ABR Schemes

In this part, we attempt to compare the DeepMPC’s perfor-
mance with the recent ABR schemes under several network
traces, i.e., FCC, and Oboe. The details of selected ABR
baselines are described in §4.1. Figure 3 shows the CDF of
QoE metrics on existing methods. We observe that DeepMPC
outperforms existing ABR approaches in all considered net-
work scenarios, with the increasing on average QoE of 5.9%
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Fig. 3. Comparing DeepMPC with existing ABRs under vari-
ous network conditions. Results are illustrated with CDF dis-
tributions and QoE improvement curves.

to 56.1%. Results also demonstrate that DeepMPC surpasses
the state-of-the-art ABR scheme Pensieve, with the improve-
ments on average QoE of 4% to 5.91%. Besides, we also
illustrate the CDF of the improvement on QoE of ABRs over
DeepMPC. As expected, results illustrate that DeepMPC im-
proves the performance for almost 75% of sessions compared
with Pensieve under Oboe dataset. Also, as shown in Fig-
ure 3(b), comparing the performance of DeepMPC with Pen-
sieve on the FCC dataset, we find that DeepMPC betters 20%
of sessions.

4.4. DeepMPC Ablation Study

In this experiment, we try to investigate how do the pro-
posed modules affect the performance of MPC. The type
MPC methods can be concluded as A +B, in which model
A is for predicting throughput, and model B is to output
a discounted factor that aims to recommend a conserva-
tive lower bound for future throughput. We list all possible
schemes and evaluate the average QoE performances for
them in different network datasets, where A includes Har-
monic mean (the original MPC method) , and DTP (§3.1), B
involves Original MPC (using throughput predicted entirely),
Robust (estimating factor based on prediction error), and
DFO (§3.2). Specifically, Harmonic mean+Robust stands for
RobustMPC and DeepMPC is represented as DTP+DFO.
The results of the schemes are demonstrated in Figure 4.3.

We observe that the harmonic+original MPC scheme works
well on Oboe dataset but heavily lacks the performances on
HSDPA and FCC dataset. The reason is that the HSDPA
dataset is mainly composed of cellular networks that pose
more challenges for throughput prediction, while the Oboe
dataset contains a corpus of wired network environments,
under which the bandwidth can be easily estimated. In par-
ticular, the DTP+Original MPC scheme performs better than
the Pensieve, with the average QoE improving by 2.58%. The
second columns of the table also prove that: Comparing with
the RobustMPC, the DTP+Robust MPC scheme improves the
average QoE by 1.84%-4.6%. Note that it has also already
outperformed Pensieve, with the improvements on average
QoE of 1.3%-5.4%. Meanwhile, DFO can significantly im-
prove the performance of MPC. Especially, DeepMPC works
better than Pensieve on all test network conditions, which
improves the average QoE of 4% to 5.91%. Comparing the
performance of DeepMPC with DTP+Robust MPC scheme,
we can see that DeepMPC plays far better than DTP+Robust
on HSDPA dataset and FCC dataset, but slightly worse on
Oboe dataset. In general, DeepMPC yields an acceptable
result on these network conditions.

4.5. Real-world Experiments

We also set up a real-world experiment to investigate how
DeepMPC performs in the wild. In detail, we evaluate the
performance of DeepMPC, RobustMPC, and Pensieve un-
der various network conditions including 4G/LTE network,
WiFi network and international link (from Singapore to Bei-
jing). For each round, we randomly pick a scheme from ABR
scheme candidates and summarize the bitrate selected, re-
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Fig. 4. Comparing the performance of DeepMPC with Pen-
sieve and RobustMPC under various real-world network con-
ditions. Results are shown with average QoE metrics.

buffering time and QoE for each chunk. The experiment takes
about 2 hours. Figure 4 shows the average QoE results for
each scheme under different network conditions. Unsurpris-
ingly, DeepMPC also outperforms previous state-of-the-art
ABR scheme Pensieve on average QoE of 5.59%-15.09%.

5. CONCLUSION

In this work, we find that DeepMPC, an ABR scheme that
leverages DL and DRL to assist traditional MPC approach,
can achieve higher performances compared with previously
proposed methods. Experimental results show that the fu-
sion of DL and MPC is successful, which increases the aver-
age QoE by 5.91% - 56.1% compared with existing schemes.
Additional research may focus on DeepMPC in various QoE
metrics.
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