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Quality-aware Neural Adaptive Video Streaming
with Lifelong Imitation Learning

Tianchi Huang, Chao Zhou, Xin Yao, Rui-Xiao Zhang, Chenglei Wu, Bing Yu, Lifeng Sun

Abstract—Existing Adaptive Bitrate (ABR) algorithms pick
future video chunks’ bitrates via fixed rules or offline trained
models to ensure good quality of experience (QoE) for Internet
video. Nevertheless, data analysis demonstrates that a good ABR
algorithm is required to continually and fast update for adapting
itself to time-varying network conditions. Therefore, we propose
Comyco, a video quality-aware learning-based ABR approach
that enormously improves recent schemes by i) picking the chunk
with higher perceptual video qualities rather than video bitrates;
ii) training the policy via imitating expert trajectories given by
the expert strategy; iii) employing the lifelong learning method
to continually train the model w.r.t the fresh trace collected by
the users. To achieve this, we develop a complete quality-aware
lifelong imitation learning-based ABR system, construct quality-
based neural network architecture, collect a quality-driven video
dataset, and estimate QoE metrics with video quality features.
Using trace-driven and real-world experiments, we demonstrate
Comyco reaches 1700× improvements in the number of samples
required and 16× speedup in the training time compared with the
prior work. Meanwhile, Comyco outperforms existing methods,
with the improvements on average QoE of 7.5%-16.79%. More-
over, experimental results on continual training also illustrate
that lifelong learning helps Comyco further improve the average
QoE of 1.07%-9.81% in comparison to the offline trained model.

Index Terms—Imitation Learning, Quality-aware, Lifelong
Learning, Adaptive Video Streaming.

I. INTRODUCTION

Recent years have witnessed a tremendous increase in
the requirements of watching online videos [1]. Adaptive
bitrate (ABR) streaming, the method that dynamically controls
the video player to download different bitrate video for the
next chunk, has become a leading scheme to deliver video
streaming services with high quality of experience (QoE) to
the users [2]. Recently, ABR technologies have been widely
used by YouTube [3], Netflix [4], and iQiyi [5]. Existing
model-based ABR approaches (§VIII) pick the next chunk’s
video bitrate via only current network status [6], [7], or
buffer occupancy [8], [9], or joint consideration of these two
factors [10], [11]. However, such heuristics are usually set up
with presumptions, that fail to work well under unexpected
network conditions [12]. Thus, several attempts, i.e., learning-
based ABR algorithms, have been made to adopt reinforce-
ment learning (RL) [12]–[14] or self-learning method [15]

T. Huang, X. Yao, RX Zhang, C. Wu, and L. Sun are with the Department
of Computer Science and Techonology, Tsinghua University, Beijing, 100084,
China. (e-mail: {htc19, yaox16, zhangrx17, wucl18}@mails.tsinghua.edu.cn,
sunlf@tsinghua.edu.cn)

C. Zhou, and B. Yu, are with Beijing Kuaishou Technology Co., Ltd,
Beijing, China. (e-mail: {zhouchao, yubing}@kuaishou.com)
� Lifeng Sun, Chao Zhou are the corresponding authors. (e-mail:

sunlf@tsinghua.edu.cn, zhouchao@kuaishou.com)

to generalize the strategies without any presumptions, and
thus, providing a feasible method to solve the ABR task from
another perspective.

While previous work has demonstrated considerable QoE
improvement in a different manner, in this study, we attempt
to understand whether current ABR methods have already been
satisfied with nowadays’ network (§II). We, therefore, collect
a large corpus of network traces (Kwai dataset) on the leading
video streaming platform Kuaishou [16] (§II-B). The analysis
shows that 1) more than 80% of network traces require an
adaptive streaming method to ensure high QoE. 2) learning-
based ABR approach (i.e., Pensieve [12]) is often required
to be trained from scratch for over 4 hours. However, the
network distribution has changed dramatically during the time
of training convergence. As a result, the algorithm, trained
on past network scenarios, may hardly provide comparable
performances under the current network condition. 3) as much
as the overall network condition shows different throughput
distribution at large time intervals, it changes slowly and
smoothly with time. Hence, learning-based ABR algorithms
should be updated effectively and efficiently for smoothing
the vibration of network conditions. To achieve this goal, we
summarize the challenges from the following perspectives:
. How to implement a quality-aware ABR system? The

majority of existing ABR approaches [10], [12], [17] place
less importance on the video quality information, while per-
ceptual video quality is a non-trivial feature for evaluating
QoE (§V-A, [18]). Consequently, even though these schemes
have achieved higher QoE objectives, they may generate the
strategy diverging from the actual demand. (§III-A)
. How to empower the training efficiency for learning-based

ABR algorithms? Recent Reinforcement Learning (RL)-based
ABR schemes [12], [13] lack the efficiency of both collected
and exploited expert samples, which leads to the inefficient
training [19]. (§III-B)
. How to achieve continual learning for the ABR sys-

tem? Learning-based ABR methods should be incrementally
updated with fresh network traces, and in the meanwhile, the
selected traces should be less but critical enough to represent
bandwidth distributions of the current network. (§III-C)

We find an opportunity to address the last two issues in
real-world network environments by leveraging the concept
of lifelong imitation learning. On the one hand, imitation
learning enables the ABR system to achieve fast training. On
the other hand, a lifelong learning method allows the neural
network (NN) to continually integrate the evolution in network
distributions into the passing time. Meanwhile, quality-aware
learning-based ABR algorithm is still challenging since the
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state-of-the-art learning-based scheme [12], [15] lacks almost
all the modules of constructing a quality-aware ABR system,
that includes, viable neural network models, feasible and high-
efficiency training methodologies, dedicated video datasets
based on video quality metrics, and quality-based QoE meth-
ods.

Following this insight, we propose Comyco, a novel video
quality-aware lifelong imitation learning-based ABR system,
aiming to remarkably improve the overall performance of
ABR algorithms via tackling the above challenges. Different
from previous work [12], Comyco is quality-aware and mainly
composed of the inner-loop system and the outer-loop system,
and is equipped with the following properties (§IV):
. Comyco aims to select bitrate with high perceptual video

quality rather than high video bitrate. To achieve this goal,
we first integrate the information of video contents, network
status, and video playback states into the Comyco’s NN for
bitrate selection (§IV-A1). Next, we use VMAF [20], a state-
of-the-art machine learning-based objective full-reference per-
ceptual video quality metric, to measure the video quality.
Meanwhile, we propose a linearity quality-based QoE metric
that achieves the state-of-art performance on Waterloo Stream-
ing SQoE-III [21] dataset (§V-A). Finally, we collect a DASH-
video dataset with various types of videos (§V-B).
. Comyco utilizes the inner-loop system (§IV-A), which

leverages imitation learning [22] for training the neural
network (NN). Since the near-optimal policy can be precisely
and instantly estimated via the current state in the ABR
scenario, the collected expert policies can enable the NN for
fast learning. The agent is allowed to explore the environment
and learn the policy via the expert policies given by the solver.
. Comyco adopts the outer-loop system (§IV-B) to achieve

continual learning. We consider the process of continuous
adaptation to network status as a lifelong learning process.
The key idea is to filter out the useful traces collected from
the client, and periodically update the NN via the inner-
loop system and learn the strategies using Learning without
Forgetting (LwF) [23] method.

Furthermore, we evaluate Comyco’s inner-loop and outer-
loop system via trace-driven and real-world experiments. Us-
ing trace-driven emulation (§VI-A2), we find that Comyco
significantly accelerates the training process, with 1700×
improvements in terms of a number of samples required
compared to the recent work (§VI-A3), and 16× speedup on
the training time. Comparing with existing schemes, Comyco
outperforms them under various network conditions (§VI-A2)
and videos (§V-B), with the improvements on average QoE
of 7.5%-16.79%. In particular, Comyco performs better than
state-of-the-art learning-based approach Pensieve [12], with
the improvements on the average video quality of 7.37% under
the same rebuffering time. Further, we report results that high-
light Comyco’s performance with different hyper-parameters
and settings (§VI-A5). Extensive results over the real-world
network scenarios indicate the superiority of Comyco over
existing state-of-the-art approaches (§VI-A6). Moreover, we
also discuss the performance of the outer-loop system, namely
lifelong Comyco (§VI-B). Experimental results demonstrate
that the using outer-loop system can effectively help the
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Fig. 1. An overview of HTTP adaptive video streaming. The system is
comprised of a video server and a video client. ABR, placed on the client side,
is an algorithm that determines next chunks’ bitrates w.r.t past throughput and
current buffer occupancy.

proposed method further improve the average QoE of 1.07%-
9.81% compared with the offline fixed model (§VI-B3).
Meanwhile, we further analyze the performance comparison
of Comyco and state-of-the-art model-based ABR approach
RobustMPC [10], and we find that lifelong Comyco can auto-
matically adapt to the complicated environment and stochas-
tic property in various network conditions. The comparison
between lifelong Comyco and the online optimal policy il-
lustrates that the proposed scheme has almost achieved the
near-optimal performance (§VI-B5).

Contribution. We summarize the contributions as follows:
• Using data-driven analysis, we identify the short-comings

of today’s ABR schemes and propose Comyco, a video
quality-aware lifelong learning-based ABR system, that sig-
nificantly ameliorates the weakness of the learning-based
ABR schemes from several perspectives (§III).

• Unlike prior work, Comyco picks the video chunk with high
perceptual video qualities instead of high video bitrates.
Experiments results also demonstrate the superiority of our
proposed algorithm (§III-A,§IV).

• To the best of our knowledge, we are the first to leverage
imitation learning to accelerate the training process for ABR
tasks. Results show that exploring imitation learning can not
only achieve sample efficiency but also improve the overall
performance (§IV-A,§VI-A).

• We consider the continuous updating task of ABR as a
lifelong learning process. Results demonstrate that adopting
lifelong learning enables the ABR algorithm to effectively
adapt the time-vary network conditions (§IV-B,§VI-B).

II. BACKGROUND AND MOTIVATION

In this section, we begin by introducing ABR’s background.
Then we analyze today’s ABR services. Finally, we highlight
the limitations of strawman solutions for ABR schemes with-
out lifelong learning and present key insights that lead to
implementing a new ABR system for providing better QoE
to the users at any time.

A. ABR Overview

Due to the rapid development of network services, watching
videos online has already become a common trend. Today,
the predominant form for video delivery is adaptive video
streaming, such as HLS (HTTP Live Streaming) [24] and
DASH [25], which is a method that dynamically selects
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Fig. 2. An overview of Kwai dataset, including the distribution of average
throughput and throughput’s prediction error using popular throughput pre-
diction method [7].

video bitrates according to network conditions and clients’
buffer occupancy. As shown in Figure 1, the traditional video
streaming framework consists of a video player client with
a constrained buffer length and an HTTP-Server or Content
Delivery Network (CDN) [7]. The video player client decodes
and renders video frames from the playback buffer. Once the
streaming service starts, the client fetches the video chunk
from the HTTP Server or CDN in order by an ABR algo-
rithm. Meanwhile, the algorithm, deployed on the client-side,
determines the next chunk N and the next chunk video quality
QN via throughput estimation and current buffer utilization.
The goal of the ABR algorithm is to provide the video chunk
with high qualities and avoid stalling or rebuffering events [2].

B. Analysis for Today’s ABR Services

Our work starts with a realistic problem: with the rapid
improvements of today’s network bandwidth, are ABR algo-
rithms still necessary for video streaming services to provide
better QoE to the users? To answer this question, we require a
fresh throughput dataset in large-scale, continuous throughput
measurements, and long session duration. However, revisiting
previously proposed public throughput trace datasets [17],
[26], [27], we observe that such existing datasets lack either
the diversity of throughput traces or the continuous measure-
ment through the entire weeks, which finally unable to use
them directly for research purpose 1. To this end, we collect
a large-scale network bandwidth dataset, namely Kwai, from
the video streaming viewers of Kuaishou [16]. Kuaishou is
a leading video streaming platform in China that has over
300 million users worldwide. The dataset consists of over 86
thousand traces from 9,941 users, 7 days in total (1104 hours
in terms of overall bandwidth time recorded.) from various
network conditions collected in June 2019. Then we utilize the
Kwai dataset to implement several experiments for answering
the questions above and dedicate several observations.
. Observation1. Experiments illustrate that ABR algorithms
are still necessary for 80% of today’s network conditions.
Meanwhile, the state-of-the-art heuristic method MPC (Model
Predictive Control) [10] only performs well under almost 40%
of all sessions.

To better investigate the importance of ABR algorithms for
today’s network, we compute average throughput on all the

1It’s notable that CS2P’s network dataset [5] is fit for our work, but it still
has not been published yet (Jan. 2020).
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Fig. 3. Comparing the throughput distribution on different network datasets.
We also report normalized QoE on each network dataset. It’s notable that
Pensieve’s training time lasts about 8 hours.

sessions of the Kwai dataset and report them as the CDF
distribution plot in Figure 2. Figure 2(a) shows, assuming that
the highest video bitrate of per chunks is 4.3Mbps 2, we find
that over 80% of sessions require ABR algorithms to adjust
next chunk’s bitrate for avoiding rebuffering events if the users
prefer watching the video with the highest bitrates since the
average bandwidth of the client is lower than the chunk with
the highest bitrate. Moreover, recent work [10] demonstrates
that MPC’s performance heavily depends on the throughput
accuracy. If the throughput’s prediction error is over 20%,
MPC will be performed under 85% of optimal QoE. Thus,
we also illustrate the CDF distribution of prediction error in
Figure 2(b), where the prediction error is computed as mean
absolute percentage error (MAPE). Surprisingly, over 60%
of sessions gain a large prediction error (over 20%), which
means, existing heuristics fail to guarantee the performance
of 40% sessions. To this end, we aim to use learning-based
ABR algorithm rather than heuristics for achieving better QoE.

. Observation2. Measurements show the network distri-
bution will be different if the time gap lasts over 6 hours.
However, the training time of recent learning-based ABR
algorithms is in the range of 4-23 hours [12], [13]. Hence, the
learned strategy (trained on previous network distributions)
may perform poorly on current network conditions.

Note that recent client-based ABRs often trained [12] or de-
signed [10], [28] once and deployed on the users’ client with-
out any further changes. Such observation leads to another crit-
ical question: can ABRs tame the complexity of dynamic net-
work conditions without updating? We, therefore, evaluate the
performance of existing ABR algorithms (i.e., Pensieve [12],
RobustMPC [10] and Pensieve (train in situ [29])) over dif-
ferent network conditions, including HSDPA, Oboe (§VI-A2)
and Kwai, on the virtual player (§VI-A2). In detail, we train
Pensieve on the training set, provided by the original Pensieve
work [30] and validate it on the various network traces with
the same trained model. In contrast, Pensieve (train in situ)
means we train and validate Pensieve on the same network
condition. Results on Figure 3(b) elaborate that 1) the overall
performance of Pensieve heavily rely on the similarity of
the throughput distribution between the training set and the
validation network environments (see more in Figure 3(a)),
and 2) learning Pensieve in situ always outperforms others

2It’s a standard-setting for HD (1080p) videos [12], [17]
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Fig. 4. CDF of session throughput by continuous day, representative time, specific time, as well as continuous time.

under all considered network environments. Hence, we believe
that the learning-based ABR algorithm has plenty of room
for improvement, e.g., narrowing the difference between the
distribution of the training set and testing set.

So, does today’s network emerge the same network distribu-
tion at different times? Figure 4(a) illustrates the CDF of the
average throughput from June 1 to June 4. We find that there’s
no obvious difference between the throughput distribution on
each day. Thus, we further discuss the throughput distribution
with three representative times on the same day, where the
time represents the sleeping time, working time, and resting
time, respectively. Results are shown in Figure 4(b), and we
can see that the network distribution is strongly correlated
with human behavior. For example, the average throughput
in the night (20:00) is lower than that in the morning (10:00).
Technically, Pensieve takes over 4-8 hours (or 120-200 thou-
sand iterations) to train a reliable strategy on current network
distributions. Thus, although its training time is rather short
compared with other learning-based ABRs [15], we believe
that the current strategy, i.e., training a NN from scratch in 4
hours, doesn’t always satisfy the users’ requirements.
. Observation3. ABR algorithms is allowed to be generated
or updated efficiently within short duration since the band-
width distribution evolves slowly over time, as the distribution
of two adjacent time points (1 hour) is approximately the same.

Figure 4(c) and 4(d) elaborate the CDF of throughput distri-
bution from another perspective, and we can see that although
the bandwidth distribution seems different at the same time on
different days (Figure 4(c)), but the conditions of two adjacent
time points (1 hour) is approximately the same (Figure 4(d)).
To this end, the intuitive idea is to continually train the model
with a short period, which allows the ABR algorithm to update
dynamically instead of leveraging fixed parameters or rules. In
our work, we set the training period as 1 hour. In detail, we
take 50-55 minutes for collecting network traces and use only
5-10 minutes for training the NN (§IV-B3).
. Summary. Exploring the aforementioned opportunities,
however, requires a learning-based ABR scheme with not
only achieving outperformed performances with fast efficiency
training in a short period but also continually learning to fit
the variety of network environments.

III. CHALLENGES AND KEY IDEAS

In this section, on the basis of the aforementioned observa-
tions, we mainly generalize three key challenges from several
perspectives, that includes, how to develop a complete video
quality-based ABR system (§III-A), how to train the NN via

imitation learning (§III-B), and how to deploy the system for
lifelong updating (§III-C).

While previous work attempts to solve the ABR problem
with different manner (§VIII), existing ABR schemes typically
suffer from several issues. To that end, we summarize the key
challenges as follows:

A. Challenges for Perceptual Video Quality-aware ABRs
Previous popular ABR schemes [5], [10], [12], [17] are of-

ten evaluated by typical QoE objectives that use the combina-
tion of video bitrates, rebuffering times and video smoothness.
However, such QoE metrics are short-handed because these
forms of parameters neglect the quality of video presenta-
tions [31]. Meanwhile, recent work [32], [33] has found that
perceptual video quality features play a vital part in evaluating
the performance of VBR-encoded ABR streaming services.

To better understand the difference between the quality-
aware and the bitrate-aware ABR scheme, we report the
trajectory generated by the two methods in Figure 5, in
which the perceptual quality is measured by Video Multi-
Method Assessment Fusion(VMAF) [20], a smart perceptual
video quality assessment algorithm based on support vector
machine(SVM), which currently stands for the state-of-the-art
quality assessment metric [33]. More information please refer
to §V-A. Figure 5(a) shows, the bitrate-aware method blindly
selects the video chunk with higher bitrate but neglects the
corresponding video quality. However, comparing the trajec-
tory of bitrate-aware with the quality-aware approach, we find
that the bitrate-aware method often downloads low-efficiency
chunk. For instance, during the playback time=14, although
the bitrates of the two choices are only one level different,
the chunk of higher bitrates gains 243.44% (17.59→60.43)
improvements on the perceptual video quality compared with
that of the lower one (see more in Figure 5(c), video
chunk 4). Meanwhile, the bitrate-aware method also wastes
the buffer on achieving a slight increase in video quality,
which may eventually cause unnecessary stalling events in
the future. E.g., during the playback time=100, the bitrate-
aware algorithm chooses the highest bitrates, but only gains
12.13% (89.13→99.97) in terms of the video quality compared
with the quality-aware method (see more in Figure 5(c),
video chunk 26). On the contrary, the quality-aware algorithm
always picks the best-efficient chunk with high perceptual
video quality and preserves the buffer occupancy within an
allowable range.

Hence, one of the better solutions is to add video bitrates
as another metric to describe the perceptual video quality.
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Fig. 6. The real trajectory on the ABR task given by imitation learning and
supervised learning, where the red background means the player occurs the
rebuffering event.

Nevertheless, current approaches, especially learning-based
ABRs [12], lack fundamental quality-based settings, i.e., archi-
tectures, metrics, datasets, and so on. We, therefore, encounter
the first challenge of our work: How to construct a video
quality-aware ABR system?

Our Solution. In this paper, our solution is generally
composed of three tasks: 1) We construct Comyco’s NN ar-
chitecture with jointly considering several underlying metrics,
i.e, past network features and video content features as well
as video playback features (§IV-A1). 2) We propose a quality-
based QoE metric (§V-A). 3) We collect a video quality DASH
dataset which includes various types of videos (§V-B).

B. Challenges for Sample Efficiency

Recent learning-based ABR schemes adopt RL methods to
maximize the average QoE objectives. The agent rollouts a
trajectory and updates the NN with policy gradients. However,
the effect of calculated gradients heavily depends on the
amount and quality of collected experiences. In most cases, the
collected samples seldom stand for the optimal policy of the
corresponding states, which leads to a long time to converge
to the sub-optimal policy [22], [34]. Thus, we are facing the
second challenge: Considering the characteristic of ABR tasks,
can we precisely estimate the optimal direction of gradients
to guide the model for better updating?

Our solution. The key principle of RL-based method is
to maximize reward of each action taken by the agent in
given states per step, since the agent does not really know

the optimal strategy [35]. However, recent work [10]–[12],
[17] has demonstrated that the ABR process can be precisely
emulated by an offline virtual player (§VI-A2) with complete
future network information. What’s more, by taking several
steps ahead, we can further accurately estimate the near-
optimal expert policy of any ABR state within an accept-
able time (§IV-A2). Thus, the intuitive idea is to leverage
supervised learning methods to minimize the loss between the
predicted and the expert policy. Nevertheless, it’s impractical
since the off-policy method [35] suffers from compounding
error when the algorithm executes its policy, leading it to drift
to new and unexpected states [36]. For example, as shown in
Figure 6(a), in the beginning, supervised learning-based ABR
algorithm fetches the bitrate that is consistent with the expert
policy, but when it selects a bitrate with a minor error (after
the black line), the state may be transited to the situation not
included in the dataset, so the algorithm would select another
wrong bitrate. Such compounding errors eventually lead to a
continuous rebuffering event (the red area in the figure). As a
result, supervised-learning methods lack the ability to learn to
recover from failures.

In this paper, we aim to leverage imitation learning, a
method that closely related to RL and supervised learning, to
learn the strategy from the expert policy samples. Imitation
learning method reproduces desired behavior according to
expert demonstrations [22]. Imitation learning method allows
the NN to explore environments and collect samples (just like
RL) and learn the policy based on the expert policy (just as
supervised learning). In detail, at step t, the algorithm infers a
policy πt at ABR state St. It then computes a loss `t(πt, π∗t )
w.r.t the expert policy π∗t . After observing the next state St+1,
the algorithm further provides a different policy πt+1 for the
next step t+ 1 that will incur another loss `t(πt+1, π

∗
t+1).

Thus, for each πt in the class of policies T ∈ {π0, . . . , πt},
we can find the policy π̂ through any supervised learning
algorithms (Eq. 1).

π̂ = argmin
π∈T

Es∼dπ [`t(πt, π
∗
t )] (1)

Figure 6(b) elaborates the principle of imitation learning-
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based ABR schemes: the algorithm attempts to explore the
strategy in a range near the expert trajectory to avoid com-
pounding errors. Moreover, Figure 5(b) also shows that the
imitation learning method can also help taming the complexity
of the ABR task, keeping the buffer occupancy within a low
but safe range.

C. Challenges for Lifelong Updating

Moreover, previous observation shows that recent learning-
based ABRs fail to deploy in the real-world scenarios since
such methods are required to online updating efficiently for
overcoming the time-varies of network conditions. At the same
time, although we’ve already attempted to leverage imitation
learning rather than reinforcement learning for fast updating,
such methods still suffer from the large corpus of network
traces on each period, and finally, resulting in the failure of
converge within an acceptable time. Hence, we finally list the
third challenge: Based on previously trained model, is there
any possibility of incrementally train an ABR algorithm with
a succinct yet efficient group of network traces?

Our Solution. We consider the problem as a standard catas-
trophic forgetting issue, a phenomenon which can be observed
as a dramatic performance degradation when some new tasks
are added to an existing NN model. To tackle this fundamental
problem [37], lifelong learning is one of the solutions which
aims to preserve the performance on previous tasks while
adapting to new data. Hence, we employ lifelong learning on
the proposed ABR system for continuously training the NN to
fit the dynamic changes of networks. Furthermore, in order to
further reduce the training overhead, we implement a module
that can dynamically filter the useful network traces from the
traces which instantly collected from the clients.

IV. COMYCO SYSTEM OVERVIEW

In this section, taking the above challenges into account,
we propose Comyco, an ABR system that uses the lifelong
imitation learning method to update the NN continuously. In
detail, as illustrated in Figure 7, Comyco consists of two
sub-systems, i.e., inner-loop training system and outer-loop
system. The inner-loop system adopts the imitation learning
method to efficiently learn the policy via cloning the behavior
of the expert strategy. The outer-loop system enables Comyco
to keep updating with low extra overhead. It’s notable that
the inner-loop system can be deployed solely if there is
no need to continuously update the model. The Comyco’s
system workflow is shown as follows: before the video starts,

Neural Network
(§IV-A1)

Virtual Player
(§VI-A2)

Experience Buffer
(§IV-A4)

Instant Solver
(§IV-A2)

Loss (§IV-A3)

Submit Samples

RolloutExpert
Action

Fig. 8. Inner-loop Training System Work-flow Overview. Training method-
ologies are available in §IV-A4.

the video player, placed on the client-side, downloads the
latest NN model from ABR model server for making further
decisions. Once the video session ends, the player collects
the available throughput trace via past download chunk size
and download time. At the same time, the collected trace will
be submitted to the outer-loop system, which is placed on the
server-side. Then the outer-loop system will instantly compute
the gap between the current policy and the optimal strategy of
the submitted trace and determine whether the trace should be
learned by current NN during the next training loop. Next, for
each time duration, the inner-loop training system, also placed
on the server, will be enabled by the outer-loop system. It then
updates the NN w.r.t the selected traces efficiently via lifelong
imitation learning training method. Finally, the trained model
will be frozen and submitted to the ABR model server. The
server then starts waiting for the request of newcomer players.

A. Inner-loop System Overview

Comyco’s inner-loop system work-flow is illustrated in
Figure 8. The sub-system is mainly composed of a NN, an
ABR virtual player, an instant solver, and an experience replay
buffer. We start by introducing Comyco’s NN architecture.
Then we explain the basic training methodology. Finally, we
further illustrate Comyco with a multi-agent framework.

1) NN Architecture Overview: Motivated by the recent
success of no-regret online learning methods [38], Comyco’s
learning agent is allowed to explore the environment via
traditional rollout methods. For each epoch t, the agent aims
to select the next bitrate via a NN. We now explain the
details of the agent’s NN including its inputs, outputs, network
architecture, and representation.
Inputs. We categorize the NN into three parts, network
features, video content features and video playback fea-
tures (Sk = {Ck,Mk, Fk}). Details are described as follows.
. Past Network features. The agent takes past t chunks’

network status vector Ck = {ck−t−1, . . . , ck} into NN,
where ci represents the throughput measured for video
chunk i. Specifically, ci is computed by ci = nr,i/di, in
which nr,i is the downloaded video size of chunk i with
selected bitrates r, and di means download time for video
chunk nr,i.

. Video content features. Besides that, we also consider
adding video content features into NN’s inputs for improv-
ing its abilities on detecting the diversity of video contents.
In details, the learning agent leverages Mk = {Nk+1, Vk+1}
to represent video content features. Here Nk+1 is a vector
that reflects the video size for each bitrate of the next chunk
k+ 1, and Vk+1 is a vector which stands for the perceptual
video quality metrics for each bitrate of the next chunk.
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Fig. 9. Comyco’s NN architecture Overview. The NN contains network
features, video content information, as well as playback status.

. Video playback features. The last essential feature for de-
scribing the ABR’s state is the current video playback status.
The status is represented as Fk = {vk−1, Bk, Dk,mk},
where vk−1 is the perceptual video quality metric for the
past video chunk selected, Bk, Dk are vectors which stand
for past t chunks’ buffer occupancy and download time, and
mk means the normalized video chunk remaining.

Outputs. Same as previous work, we consider using discrete
action space to describe the output. Note that the output is
an n-dim vector indicating the probability of the bitrate being
selected under the current ABR state Sk.
NN Representation. As shown in Figure 9, for each input
type, we use a proper and specific method to extract the under-
lying features. Specifically, we first leverage a single 1D-CNN
layer with kernel=4, channels=128, stride=1 to extract network
features to a 128-dim layer. We then use two 1D-CNN layers
with kernel=1x4, channels=128 to fetch the hidden features
from the future chunk’s video content matrix. Meanwhile,
we utilize a 1D-CNN or a fully connected layer to extract
the useful characteristics from each metric upon the video
playback inputs. The selected features are passed into a Gated
Recurrent Unit (GRU) [39] layer and outputs as a 128-dims
vector. Finally, the output of the NN is a 6-dims vector, which
represents the probabilities for each bitrate selected. We use
RelU as the active function for each feature extraction layer
and leverage softmax for the last layer.

2) Instant Solver: Once the sampling module rolls out an
action at, we aim to design an algorithm to fetch all the
optimal actions ât with respect to current state st. Followed
by these thoughts, we further propose the Instant Solver. The
key idea is to choose future chunk k’s bitrate Rk by taking N
steps ahead via an offline virtual player, and solves a specific
QoE maximization problem with future network throughput
measured Ct, in which the future real throughput can be
successfully collected under both offline environments and
real-world network scenarios. Inspired by recent model-based
ABR work [10], we formulate the problem as demonstrated
in Eq. 2, denoted as QoENmax. In detail, the virtual player
consists of a virtual timestamp, a real-world network trace ,
and a video description. At virtual time tk, we first calculate
download time for chunk k via dk(Rk)/Ck, where dk is the
video chunk size for bitrate Rk, and Ck is average throughput
measured. We then update Bk+1 buffer occupancy for chunk

k + 1, in which δtk reflects the waiting time such as Round-
Trip-Time (RTT) and video render time, and Bmax is the
max buffer size. Finally, we refresh the virtual time tk+1

for the next computation. Note that the problem can be
solved with any optimization algorithms, such as memoization,
dynamic programming as well as Hindsight [4]. Ideally, there
exists a trade-off between the computation overhead and the
performance. We list the performance comparison of instant
solver with different N in §VI-A5. In this work, we set N = 8.

max
R1,...,RN ,Ts

QoEN (2)

s. t. tk+1 = tk +
dk(Rk)

Ck
+ δtk, (3)

Ck =
1

tk+1 − tk − δtk

∫ tk+1−δtk

tk

Ctdt, (4)

Bk+1 =

[(
Bk −

dk(Rk)

Ck

)
+

+ L− δtk

]
+

, (5)

B1 = Ts, (6)
Bk ∈ [0, Bmax], Rk ∈ R, ∀k = 1, 2, . . . , N. (7)

3) Choice of Loss Functions for Comyco: We start by
designing the loss function from the fundamental RL training
methodologies. The goal of the RL-based method is to maxi-
mize the Bellman Equation, which is equivalent to maximize
the value function qπ(s, a) [35]. Thus, given an expert action
â and the optimal value function qπ(s, â) = q∗(s, a), we can
update the model via minimizing the gap between the true
action probability Â and π, where Â is a one hot encoding
in terms of â. For more theoretical analysis please refer to
§VII-A. In this paper, we use cross entropy error as the
loss function. Note that the function can be represented as
any traditional behavioral cloning loss method [22], such as
Quadratic, LI-loss and Hinge loss function. In addition, we
find that the other goal of the loss function is to maximize the
probabilities of the selected action, while the goal significantly
reduces the aggressiveness of exploration, and finally, resulting
in obtaining the sub-optimal performance. Thus, motivated by
the recent work on RL [40], we further add the entropy H
of the policy π to the loss function. It can encourage the
algorithm to increase the exploration rate in the early stage and
discourage it in the later stage. The loss function for Comyco
is described in Eq 8.

Lcomyco = −
∑

Â log π(s, a; θ) + αH(π(s; θ)). (8)

Here π(s, a; θ) is the rollout policy selected by the NN, Â is
the real action probability vector generated by the expert actor
â, H(π(s; θ) represents the entropy of the policy, α is a hyper-
parameter that controls the encouragement of exploration. In
this paper, we set α = 10−3 and discuss Lcomyco with different
α in §VI-A5. Recall that Llifelong (§IV-B3) will be used to
take the place of Lcomyco if the outer-loop system is required.

4) Training Comyco with Experience Replay: Recent off-
policy RL-based methods [41] leverage experience replay
buffer to achieve better convergence behavior when training
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a function approximator. Inspired by the success of these
approaches, we also create a sample buffer that can store the
past expert strategies and allow the algorithm to randomly pick
the sample from the buffer during the training process. We will
discuss the effect of utilizing experience replay in §VI-A5. We
summarize the training procedure in Alg. 1.

Algorithm 1 Inner-loop Overall Training Procedure
Require: Training model θ, Instant Solver(§IV-A2).

1: procedure INNER-LOOP TRAINING
2: Initialize π.
3: Sample Training Batch B = {}.
4: Randomly pick trace, video from network (§VI-A2) and

video (§V-B) dataset.
5: Get State ABR state st.
6: repeat
7: Picks at according to policy π(st; θ).
8: Expert action ât = Instant Solver(st, trace, video).
9: B ← B

⋃
{st, ât}.

10: Samples a batch B̂ ∈ B.
11: Updates network θ with B̂ using Eq.8 or Eq.10;
12: Produces next ABR state St+1 according to st and at.
13: if done then . End of the video.
14: Randomly pick trace, video from the network and

video dataset.
15: Get State ABR state st.
16: t← t+ 1
17: until Converged

5) Parallel Training: Notably, the training process can be
designed asynchronously, which is quite suitable for the multi-
agent parallel training framework. Inspired by the multi-agent
training method [18], [40], we modify Comyco’s framework
from single-agent training to asynchronous multi-agent train-
ing. The Comyco’s multi-agent training consists of three parts,
a central agent with a NN, an experience replay buffer, and a
group of agents with a virtual player and an instant solver.
For any ABR state s, the agents use the virtual player to
emulate the ABR process w.r.t current states and actions given
by the NN which placed on the central agent, and collect the
expert action â through the instant solver; they then submit the
information containing {s, â} to the experience replay buffer.
The central agent trains the NN by picking the sample batch
from the buffer. By default, Comyco uses 12 agents, which is
the same number of CPU cores of our PC.

B. Outer-loop System Overview

The key idea of the outer-loop sub-system is to reduce the
number of training set with guaranteeing the training perfor-
mance as much as possible. We demonstrate the outer-loop
lifelong learning system in Figure 10. The sub-system includes
several modules, such as the Optimal Estimator (§IV-B1) and
the Trace Collector (§IV-B2). In this section, we introduce the
modules and illustrate the training methodologies (§IV-B3).

1) Optimal Estimator: Technically, the Optimal Estimator
is a module which can compute the normalized QoE Etr on a
network throughput trace tr, where the trace is collected and
reported from the client. As suggested by prior work, Etr is
defined as the ratio between the QoE performed by the current
policy Qtr,θ and the optimal QoE Qopt ( Eq. 9). Meanwhile,

Optimal Estimator
(§IV-B1)

Throughput Collector
(§IV-B2)

Client

Store Useful
Traces

Inner-loop System
(§IV-A)

Lifelong Imitation
Learning(§IV-B3)

Throughput
Trace

Trained
Model

Fig. 10. Outer-loop Training System Work-flow Overview. Training method-
ologies are available in §IV-B3.

we leverage an instant solver (§IV-A2) for estimating the
optimal strategy. Specifically, we roll out the best bitrate for
each step via maximizing the QoE objective (Eq. 2). In this
work, we also set the future horizon N = 8 since the near-
optimal policy is well enough for this task [10], [12]. It’s
worth noting that we can also employ Hindsight [4] or another
optimal ABR estimator [5] to replace the instant solver instead.

Etr =
Qtr,θ
Qopt

(9)

2) Trace Collector: Having computed the normalized QoE
metric from the Optimal Estimator, we focus on learning
a proper NN for the current network conditions efficiently.
Ideally, the intuitive idea is to use the whole collected trace to
fine-tune the old NN. However, it’s impractical since the num-
ber of collected trace is so huge that the NN can not be trained
in an allowable time. Moreover, previous analysis shows that
there is not much difference in the network distribution within
an hour (§III-B), that means, the trained policy may perform
well on most traces but eventually fail on some traces. Taking
such observations into account, our key idea is to pick proper
traces into the Trace Collector, in which the normalized QoE
of the trace is lower than the given threshold Thres. The
inner-loop system then trains the NN from the network trace
in the Trace Collector. Finally, Comyco generalizes a strategy
for the network conditions under the next training period. In
this work, we set Thres as 0.8, and the training period as
1 hour. We further investigate the influence of Thres on the
proposed method in §VI-B7.

3) Loss Function for Lifelong Learning Method: The goal
of the lifelong learning [42] is to avoid Catastrophic Forget-
ting, that means, the NN works well on the latest task but
suffers from unexpected performance on previous tasks. In
this work, we pick Learning without Forgetting (LwF) [23],
which uses outputs of the old models as soft targets on
old tasks, as the learning algorithm. LwF enables the lowest
computation cost among all the previously proposed schemes
and works in the comparable performance in terms of the
state-of-the-art approach [42]. Subsequently, we implement an
LwF-based loss function Llifelong to take the place of the
loss function LComyco of the inner-loop system for achieving
continual learning. The equation is listed in Eq. 10, where
LComyco represents the loss function of Comyco (listed in
Eq. 8), π(s, a; θold) is roll out policy via the old NN (previous
network), and π(s, a; θ) is the rollout policy for current NN. It
is notable that we refer the old policy π(s, a; θold) as a value,
which means, it does not provide any gradients for the loss
function. Inspired by prior work [23], we set λ=1. In general,
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(a) Video Bitrate: 0.480 (b) SSIM: 0.592 (c) VMAF: 0.689

Fig. 11. Correlation comparison of video presentation quality metrics on
the SQoE-III dataset [21]. Results are summarized by Pearson correlation
coefficient [43].

we demonstrate the training methodology of the outer-loop
system in Alg. 2. As shown, the workflow mainly consists
of three parts, i.e., i) picking necessary network traces via
Optimal Estimator, ii) storing the trace if the normalized QoE
lower than the threshold, iii) starting learning the algorithm if
the period reaches 1 hour.

Llifelong = LComyco + λ
∑

π(s; θold) log π(s; θ). (10)

Algorithm 2 Outer-loop Overall Training Procedure
Require: Old model θold, Training model θ
Require: Trace Collector T (§IV-B3), Threshold Thres.
Require: Optimal Estimator(§IV-B1).

1: procedure OUTER-LOOP TRAINING
2: Receive trace from the client.
3: Etr ← Optimal Estimator(trace).
4: if Etr <Thres then
5: Store trace into Trace Collector.
6: if Training period = 1 hour then
7: Inner-loop Training(T ) (§IV-A4) with the loss

function LLifelong (Alg.10).
8: Submit the trained model to the ABR model server.

V. QOE METRICS AND VIDEO DATASETS

Upon constructing Comyco’s NN architecture by consider-
ing video content features, we have yet discussed how to train
the NN. Indeed, we lack a video quality-aware QoE model
and an ABR video dataset with video quality assessment. In
this section, we use VMAF to describe the perceptual video
quality of our work. We then propose a video quality-aware
QoE metric under the guidance of the real-world ABR QoE
dataset [21]. Finally, we collect a DASH video dataset with
different VMAF assessments.

A. QoE Model Setup
Motivated by the linear-based QoE metric that is widely

used to evaluate several ABR schemes [10], [12], [17], [28],
[32], [44], we concluded our QoE metric QoEv as:

QoEv = α

N∑
n=1

q(Rn)− β
N∑
n=1

Tn

+ γ

N−1∑
n=1

[q(Rn+1)− q(Rn)]+ − δ
N−1∑
n=1

[q(Rn+1)− q(Rn)]− ,

(11)

TABLE I
PERFOMANCE COMPARISON OF QOE MODELS ON WATERLOO

STREAMING SQOE-III [21]

QoE model Type VQA SRCC
Pensieve’s [12] linear - 0.6256

MPC’s [10] linear - 0.7143
Bentaleb’s [28] linear SSIMplus [48] 0.6322
Duanmu’s [21] linear - 0.7743

QoEv with Combined Smooth. linear VMAF [20] 0.7741
Comyco’s linear VMAF 0.7870

where N is the total number of chunks during the session,
Rn represents each chunk’s video bitrate, Tn reflects the
rebuffering time for each chunk n, q(Rn) is a function that
maps the bitrate Rn to the video quality perceived by the user,
[q(Rn+1)− q(Rn)]+ denotes positive video bitrate smooth-
ness, meaning switch the video chunk from low bitrate to high
bitrate and [q(Rn+1)− q(Rn)]− is negative smoothness, and
α, β, γ, δ are the parameters to describe their aggressiveness.
Choice of q(Rn). Estimating QoE via handcrafted features
from the client-side has lasted a long history [33], as sev-
eral schemes seldom yield a reliable result. Revisiting these
schemes, we find that Video quality assessment (VQA) plays
a crucial part in QoE models. Most studies pick video bitrate,
SSIM or PSNR [45] as the inputs, while such metrics fail to
either precisely reflect the visual quality seen by human eyes
or accurately describe the latent video features, resulting in the
failure of characterizing the video qualities of the entire video
sessions [31]. To better understand the correlation between
video presentation quality and QoE metric, we test the corre-
lation between mean opinion score (MOS) and video quality
assessment (VQA) metrics, including video bitrate, SSIM
and Video Multimethod Assessment Fusion (VMAF) [20],
under the Waterloo Streaming QoE Database III (SQoE-III).
Here SQoE-III is the largest and most realistic dataset for
dynamic adaptive streaming over HTTP [21], which consists
of a total of 450 streaming videos created from diverse source
content and diverse distortion patterns [21]. SSIM is a popular
image quality metric [13]. VMAF is an objective full-reference
video quality metric that is formulated by Netflix to estimate
subjective video quality. Results are collected with Pearson
correlation coefficient [43] as suggested by [46]. As shown
in Figure 11, we can see that VMAF achieves the highest
correlation among all candidates, with the improvements in
the coefficient of 16.39%-43.54%. Besides, VMAF is also
a popular scheme with great potential in both academia and
industry [47]. We, therefore, set q(Rn) = VMAF(Rn).
QoE Parameters Setup. Recall that the main goal of our
paper is to propose a feasible ABR system instead of a
convincing QoE metric. In this work, we attempt to lever-
age linear-regression methods to find the proper parameters.
Specifically, we randomly divide the SQoE-III database into
two parts, 80% of the database for training and 20% testing.
We follow the idea by [21] and run the training process
for 1,000 times to mitigate any bias caused by the division
of data. As a result, we set α = 0.8469, β = 28.7959,
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γ = 0.2979, δ = 1.0610. We take the Spearman correlation
coefficient (SRCC), as suggested by [21], to evaluate the
performance of our QoE model with existing proposed models
and the median correlation and its corresponding regression
model are demonstrated in Table I. As shown, the QoEv model
outperforms recent work. In conclusion, the proposed QoE
model is well enough to evaluate ABR schemes.
Separated smoothness metrics. The reason why we separate
smoothness metrics is that: during the pre-experiment, we find
that there is a positive correlation between positive smoothness
and MOS, which means, users will feel satisfied if the video
quality increases. Extensive analysis shows that the weight
for negative smoothness is 3× higher than that of positive
smoothness, which demystifies a severe penalty on decreasing
video qualities. Besides, prior work [33], [49], [50] has also
observed the correlation between the positive smoothness and
the negative smoothness. Results on Table I also illustrate
that Comyco with separated smoothness metric can effectively
improve the performance on the SRCC score of 3.0%.

B. Video Datasets

To better improve the Comyco’s generalization ability, we
propose a video quality DASH dataset that involves movies,
sports, TV-shows, games, news and MVs. Specifically, we first
collect video clips with highest resolution from YouTube [51],
then use FFmpeg [52] to encode the video by H.264 codec
and MP4Box [53] to dashify videos according to the encoding
ladder of video sequences ({235, 375, 560, 750, 1050, 1750,
2350, 3000, 4300}kbps) [12], [21], [25]. Each chunk is en-
coded as 4 seconds. During the trans-coding process, for each
video, we measure VMAF, VMAF-4K and VMAF-phone met-
ric with the reference resolution of 1920×1080 respectively. In
general, the dataset contains 86 complete videos, with 394,551
video chunks and 1,578,204 video quality assessments. The
dataset have been published in [54].

VI. EVALUATION

In this section, we propose several experiments to analyze
the performance of Comyco. We start by evaluating Comyco’s
inner-loop system under various network conditions and com-
pare it with previously proposed ABR approaches (§VI-A). We
then evaluate the outer-loop system over real-world network
traces and compare it with several ABR schemes, such as
previously proposed ABR schemes, and outer-loop system
with different updating strategies (§VI-B).

A. Evaluation for Inner-loop System

Recall that the Comyco’s inner-loop system can be deployed
solely if there is no need to achieve continual learning. In this
experiment, we treat the inner-loop system as Comyco, and
use Lcomyco as the NN’s loss function.

1) Implementation: We use TensorFlow [55] to implement
the training workflow and utilizing TFlearn [56] to construct
the NN architecture. Besides, we use C++ to implement
the instant solver and the virtual player. Then we leverage
Swig [57] to compile them as a Python class. The NN takes

the past sequence length k = 8 (as suggested by [12]) and
future 1 video chunk features (as suggested by [10]) into the
NN. We set the learning rate α = 10−4 and use the Adam
optimizer [58] to optimize the model. For more details, please
refer to our repository [59].

2) Experimental Setup: The evaluation system consists of:
Virtual Player. We design a faithful ABR offline virtual player
to train Comyco via network traces and video descriptions. The
player is written in C++ and Python3.6, with close refering to
several state-of-the-art open-sourced ABR simulators includ-
ing Pensieve, Oboe and Sabre [11]. Comparing the executing
time of C++-based instant solver and python-based solver, we
find that using C++ will significantly accelerate the training
process, with the improvements of 15,000%.
Testbed. Our work consists of two testbeds. Both server and
client run on the 12-core, Intel i7 3.7 GHz CPUs with 32GB
RAM running Windows 10. Comyco can be trained efficiently
on both GPU and CPU. The testbed is composed of:
. Trace-driven Emulation. Following the instructions of

recent work [12], [17], we utilize Mahimahi [60] to emulate
the network conditions between the client (ChromeV73)
and ABR server (SimpleHTTPServer by Python2.7) via
collected network traces.

. Real World Deployment. Details are illustrated in §VI-A6.
Network Trace Datasets. We collect about 3,000 network
traces, totally 47 hours, from public datasets for training and
testing, including:
. Chunk-level Network Traces: including HSDPA [27]: a

well-known 3G/HSDPA network trace dataset, we use a
slide-window to upsampling the traces as mentioned by Pen-
sieve (1000 traces, 1s granularity); FCC [26]: a broadband
dataset (1000 traces, 1s granularity); Oboe [61] (428 traces,
1-5s granularity): a trace dataset collected from wired, WiFi
and cellular network connections (only for validation.)

. Synthetic Network Traces: uses a Markovian model where
each state represented an average throughput in the afore-
mentioned range [12]. We create network traces in over 1000
traces with 1s granularity.

ABR Baselines. In this paper, we select several represen-
tational ABR algorithms from various type of fundamental
principles. Details of each algorithm are listed in §VIII.
. Rate-based Approach (RB) [7]: uses harmonic mean of

past five throughputs measured as future bandwidth, and
picks the next chunks’ bitrate with nearest and lower than
the predicted bandwidth.

. BOLA [9]: turns the ABR problem into a utility maximiza-
tion problem and solve it by using the Lyapunov function. It
is a typical buffer-based approach. We use BOLA provided
by the authors [11].

. RobustMPC [10]: inputs the buffer occupancy and through-
put predictions and then maximizes the QoE by solv-
ing an optimization problem. We use C++ to implement
RobustMPC and leverage QoEv (§V-A) to optimize the
strategy.

. Pensieve [12]: the state-of-the-art ABR scheme which uti-
lizes Deep Reinforcement Learning (DRL) to pick bitrate
for next video chunks. Pensieve takes the former network
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Fig. 12. Comparing Comyco with existing ABR approaches under the HSDPA and FCC network traces. Results are illustrated with CDF distributions, QoE
improvement curves and the comparison of several underlying metrics (§V-A).
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Fig. 13. Comparing the performance of Comyco with Pensieve and Super-
vised learning-based method under the HSDPA dataset. Comyco is able to
achieve the highest performance with significant gains in sample efficiency.

status as states and reinforces itself through the interaction
with the faithful offline simulator. We use the scheme
implemented by the authors [30] but retrain the model for
our work (§VI-A3).

3) Comyco vs. ABR schemes: In this part, we attempt to
compare the performance of Comyco with the recent ABR
schemes under several network traces via the trace-driven
virtual player. The details of selected ABR baselines are
described in §VI-A2. We use EnvivoDash3, a widely used [10],
[12], [17], [44] reference video clip [25] and QoEv to measure
the ABR performance.
. Pensieve Re-training. We retrain Pensieve via our

datasets (§VI-A2), NN architectures (§IV-A1) and QoE met-
rics (§V-A). Followed by recent work [17], our experiments
use different entropy weights in the range of 5.0 to 0.1
and dynamically decrease the weight every 1000 iterations.
The training time takes about 8 hours and we show that
Pensieve outperforms RobustMPC, with an overall average
QoE improvement of 3.5% across all sessions.
Comyco vs. Existing ABRs. Figure 12 shows the comparison
of QoE metrics for existing ABR schemes (§VI-A2). Comyco
outperforms recent ABRs, with the improvements on average
QoE of 7.5% - 17.99% across the HSDPA dataset and 4.85%-
16.79% across the FCC dataset. Especially, Besides, we also
show the CDF of the percentage of improvements in QoE
for Comyco over existing schemes. Comyco surpasses state-
of-the-art ABR approach Pensieve for 91% of the sessions
across the HSDPA dataset and 78% of the sessions across the

FCC dataset. What’s more, we also report the performance of
underlying metrics including average video quality (VMAF),
rebuffering time, positive and negative smoothness, as well as
QoE. We find that Comyco is well performed on the average
quality metric, which improves 6.84%-15.64% compared with
other ABRs. Moreover, Comyco is able to avoid rebuffering
and bitrate changes.
Sample Efficiency of ABR Schemes. Figure 13 illustrates
the average QoE of learning-based ABR schemes under the
HSDPA network traces. We validate the performance of two
schemes respectively during the training process. Results are
shown with two perspectives including Epoch-Average QoE
and Training time-Average QoE. As expected (§III-B), we
observe that the supervised learning-based method fails to
find a strategy, which thereby leads to poor performance.
Furthermore, we see about 1700x improvement in terms of
the number of samples required and about 16x improvement
in terms of training time required. It makes sense since the
training the agent with a model-free RL-based method [35] is
difficult. The agent is required to learn a latent representation
together with a control policy to perform the task, as general-
izing a feasible encoder via a continuous reward signal is not
only extremely sample inefficient but also prone to suboptimal
convergence. Meanwhile, achieving high sample efficiency is
essential since the equilibria of learning-based methods are
not always Pareto efficient in offline-training tasks, e.g., fast
generating ABR algorithms for personalized QoE or specific
videos, new NN architecture exploration. Moreover, the key
issue of RL-based ABR scheme (e.g., Pensieve) is to neglect
exogenous inputs (e.g. future throughput measured) when
estimating policy gradient, since the advantage function may
be overestimated or underestimated. On the contrary, in our
work, Comyco considers the future throughput as the latent
feature. As a result, imitation learning-based ABR approach
Comyco outperforms Rl-based ABRs. Same conclusions and
proofs please refer to RL-based input variance algorithms [34].

4) Comyco with Multiple Videos: To better understand
how Comyco performs on various videos, we randomly pick
videos from different video types (§V-B) and utilize Oboe
network traces [17] to evaluate the QoEv performances of
the proposed methods. Oboe network traces have diverse
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Fig. 14. Comparing Comyco with existing ABR approaches under the Oboe
network traces and various types of videos.

TABLE II
COMYCO WITH DIFFERENT N AND REPLAY STRATEGIES.

α = 0.001/N 5 6 7 8 9
Replay Off 0.883 0.893 0.917 0.932 0.942
Replay On 0.911 0.921 0.937 0.946 0.960

TimeSpan(Opt. Off)(ms) 1.56 8.74 58.44 389.68 2604.46

network conditions, which bring more challenges for us to
improve the performance. Figure 14 illustrates the comparison
of QoE metrics for state-of-the-art ABR schemes under various
video types. We find that Comyco generalizes well under
all considered video scenarios, with the improvements on
average QoE of 2.7%-23.3% compared with model-based
ABR schemes and 2.8%-13.85% compared with Pensieve.
Specifically, Comyco can provide high-quality ABR services
under movies, news, and sports, which are all the scenarios
with frequent scene switches. We also find that Comyco fails
to demonstrate overwhelming performance in serving music
videos. It is really an interesting topic and we will discuss it
in future work.

5) Ablation Study: In this section, we set up several ex-
periments that aim to provide a thorough understanding of
Comyco, including its hyper-parameters and overhead. It is
worth noting that we have computed the offline-optimal results
via dynamic programming and complete network status [12]
before the experiment and treated it as a baseline.
Comparison of Different Future Step N. We report normal-
ized QoE and raw time span of Comyco with different N and
replay experience strategy in Table II. Results are collected
under the Oboe dataset [17]. As shown, we find that experience
replay can effectively help Comyco learn better. Recall that the
instant solver is only used in the training process, and Comyco
will inference solely on the client side during the validation
process. Meanwhile, despite the outstanding performance of
Comyco with N=9, such scheme lacks the algorithmic ef-
ficiency and can hardly be deployed in practice. Thus, we
choose N=8 for harmonizing the performance and the cost.
Comyco with Different α. Further, we compare the normal-
ized QoE of Comyco with different α under the Oboe dataset.

TABLE III
COMYCO WITH DIFFERENT α.

α 0.1 0.01 0.001 0.0001 0
N=4 0.883 0.895 0.904 0.881 0.867

TABLE IV
MODEL SIZE AND COST COMPARISON OF DIFFERENT ABRS.

RB
[7]

BB
[8]

Quetra
[62]

RMPC
[10]

Pensieve
[12]

Comyco

Size(MB) 0.003 0.003 0.005 0.013 2.6 2.4
Time(MS) 461 278 588 10854 3090 2593
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Fig. 15. Comparing Comyco with Pensieve and RobustMPC under the real-
world network conditions. We take QoE = 60 as baselines.

As listed in Table III, we confirm that α = 0.001 represents the
best parameters for our work. Meanwhile, results also prove
the effectiveness of utilizing entropy loss (§IV-A3).
Comyco Overhead. We calculate [63] the number of floating-
point operations (FLOPs) of Comyco and find that Comyco
has the computation of 229 Kflops, which is only 0.15% of
the light-weighted neural network ShuffleNet V2 [64] (146
Mflops). At the same time, we also discuss the model size
and time span of several representative ABR algorithms in
Table IV, in which the time span represents the total time
taken by the algorithm to execute about 7,000 times. The
experiment is done on the 12-core, Intel i7 CPUs with 32GB
RAM. As shown, the average execution time of Comyco on
the laptop is only 0.4ms, yielding an acceptable result. Hence,
we believe that Comyco can be successfully deployed on the
PC and laptop, or even, on the mobile.

6) Comyco In the Real World: We establish a full-system
implementation to evaluate Comyco in the wild. The system
mainly consists of a video player, an ABR server and an HTTP
content server. On the server-side, we deploy an HTTP video
content Server. On the client-side, we modify Dash.js [25]
to implement our video player client and we use Chrome
to watch the video. Moreover, we implement Comyco as
a service on the ABR server. We evaluate the performance
of proposed schemes under various network conditions in-
cluding 4G/LTE network (from Beijing to Qingdao), WiFi
network (from Tsinghua’s public WiFi to Qingdao) and inter-

TABLE V
REAL-WORLD NETWORK MEASUREMENT.

Network
RTT
(ms)

Avg. Throughput
(KB/s)

Std. Throughput

4G 65.91 325.23 53.72
WiFi 15.58 292.98 27.65
Inter. 193.3 420.15 266.9
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Fig. 16. Comparing Comyco with several base-
lines under Kwai dataset. Results are reported
with QoE curves on each duration.
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Fig. 18. Comparing the QoE of Comyco with
the one without using LwF method. Results are
collected under the Kwai dataset.

national link (from Singapore to Beijing). Table V illustrates
network status, where µ is the average throughput measured
and σ represents standard deviation from the average. For
each round, we randomly pick a scheme from candidates
and summarize the bitrate selected and rebuffering time for
each chunk. Each experiment takes about 2 hours. Figure 15
shows the average QoE results for each scheme under different
network conditions. It’s clear that Comyco also outperforms
previous state-of-the-art ABR schemes and it improves the
average QoE of 4.57%-9.93% compared with Pensieve and of
6.43%-9.46% compared with RobustMPC.

B. Evaluation for Outer-loop System

1) Implementation: We adopt C++ to implement the Op-
timal Estimator, and uses Python to construct the Trace Col-
lector. Note that the inner-loop system uses Llifelong (§10),
rather than Lcomyco (§8), to train the NN, since the outer-loop
system enables Comyco to achieve continual learning.

2) Experimental Setup: Considering the goal is to evaluate
the effectiveness of lifelong learning rather than the perfor-
mance of ABR streaming, we adopt virtual player (§VI-A2
to validate the outer-loop system via trace-driven emulation.
Technically, unlike inner-loop system evaluation, we list net-
work trace dataset and baselines as follows:
Network Trace Dataset. As described before, the sub-system
is required to evaluate on continuous network throughput
dataset. To that end, we utilize the large-scale network band-
width dataset Kwai. The dataset contains over 860,000 traces,
collected from about 10,000 unique users, totally 7 days from
various network conditions, including wired, WiFi, cellular
network, and so forth (§III-B).
Baselines. In this work, we pick several representative outer-
loop system in different strategies as baselines.
. Fine-tuning for 50 epochs (Fine-tune-50): for each period
t, we tune the trained model on the t-th hours’ network
traces for 50 epochs, lasting about 5 minutes for learning.

. Fine-tuning for 300 epochs (Fine-tune-300): we fine-tune
the trained model on network traces for 300 epochs for
each time period. Note that the training time lasts over 30
minutes, which is impractical in practice.

. Re-train Comyco in 50 epochs (Retrain-50): for each
duration t, we train Comyco on network traces in the range
of t-th hours from scratch.

. Re-train Comyco in 300 epochs (Retrain-300): we retrain
Comyco for about 300 epochs since Comyco will be effi-
ciently converged with an acceptable results. Recall that the
training time lasts over half of the time duration.

. RobustMPC [10]: picks the bitrate by the model predictive
control method. As mentioned before, we also adopt C++
to implement RobustMPC and leverage QoEv (§V-A) to
optimize the strategy.

. Comyco Offline Training (Comyco-offline): offline
trains Comyco with inner-loop system’s network trace
dataset (§VI-A2). Note that we didn’t further tune the NN
model once Comyco’s model has been trained (§VI-A5).

Testing Methodology. Like previous experiments, we use
QoEv (§V-A) to evaluate each scheme. For each duration t, we
train the baselines on the network throughput traces with the
range of t-th to t+1-th hour in the Kwai dataset, and validate
them on the network dataset within t+1-th to t+2-th hour.
In order to evaluate the fast convergence, we set the default
training epoch as 50. The training time lasts about 5 minutes
on our device (§VI-A2), and we evaluate the traces of 12 hours
in one day. Furthermore, we also set training models in 300
epochs (Fine-tine-300 and Retrain-300) as strong baselines
to better understand the gap between the proposed strategies
and online-optimal policies. In this experiment, we treat the
Comyco with outer-loop system as lifelong Comyco.

3) Comparison of Different Outer-loop Strategies: Fig-
ure 16 shows the average QoE curves of lifelong Comyco
and other baselines on the Kwai dataset. We can see that
lifelong Comyco always rivals or outperforms other ap-
proaches. Specifically, lifelong Comyco performs better than
the Comyco-offline scheme, with the improvements on average
QoE of 1.07% - 9.81%. Another observation of this experiment
demonstrates the weakness of the retrain and the fine-tune ap-
proach: if the network situation changes dramatically (see time
0 to time 2 in Figure 16), such algorithms will not be able to
provide reliable QoE to the users. Besides, fine-tune-50 works
well when the network distribution changes steadily (from time
4-7) since the training set and the validation set are almost in
the same distribution.

4) lifelong Comyco vs. Comyco without LwF: In this ex-
periment, we validate the effectiveness of the LwF method. As
shown in Figure 18, comparing the overall QoE performance
of lifelong Comyco and Comyco without LwF, we observe
that lifelong Comyco improves the average QoE by 1.51%-
21.41% compared with the other methods. It makes sense
since lifelong Comyco trains the NN with joint considering
the previous network status and current network observed,
whereas the other one diverges.

5) lifelong Comyco vs. Online Optimal: To better under-
stand the gap between lifelong Comyco and online optimal, we
set up an experiment to evaluate the performance of lifelong
Comyco, Fine-tune-300 as well as Retrain-300 (§VI-B2).
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Kwai dataset. Results are also reported with QoE
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Fig. 21. Comparing the performance of Comyco
and Comyco-Offline performs over multiple days.

Results are collected over the same video description and
network traces. As illustrated in Figure 17, we show that
lifelong Comyco almost reaches the online optimal across
the entire session, with the decreases of only 0.02%-3.34%
compared with Fine-tune-300, and 0.12%-3.33% in terms of
Retrain-300. In particular, we also find that lifelong Comyco
performs better than 16% of the sessions on Fine-tune-300 and
Retrain-300, where the QoE performance slightly increases
with the range of 0.17% to 1.53%. Such a conclusion also
proves the effectiveness of the lifelong learning method.

6) lifelong Comyco vs. RobustMPC: Besides, we also com-
pare the performance of lifelong Comyco with the current
state-of-the-art model-based approach RobustMPC. Results
are illustrated as QoE curves in Figure 19. As expected, we
can find that lifelong Comyco stands for the better scheme,
outperforming RobustMPC on average QoE of 0.12% - 5.70%.
In general, such observations prove that a good ABR algorithm
is required to update dynamically for fitting the changes of
real-world network conditions [17].

7) lifelong Comyco with Different Threshold Thres:
In this experiment, we aim to understand the influence of
threshold Thres for Comyco. In detail, we use three threshold
candidates, involving {0.8, 0.9, 0.95}. We evaluate the lifelong
Comyco with the proposed threshold on the same network
environments respectively. Results are plotted in Figure 20. As
shown, we see that Thres=0.8 represents the best parameter
of lifelong Comyco. Especially, Thres=0.8 works well in
time 2, while the other scheme fails to achieve a good result.
It is notable that the choice of the value strongly depends on
the current task.

8) Evaluating lifelong Comyco Throughout the Entire Ses-
sion: Finally, we discuss the behavior of lifelong Comyco
and Comyco-Offline over multiple days. Recall that once the
Comyco-Offline has been trained, the model is not allowed
to be fine-tuned with any methods (we can also call this
zero-shot learning). Result in Figure 21 illustrates that the
lifelong Comyco can always keep the performance within a
stable range. In contrast, Comyco-Offline sometimes fails to
perform well on some days (e.g., the 4-th day) since it cannot
adapt to time-vary network environments. In general, lifelong
Comyco improves the average QoE by 2.3%-4.2% compared
with Comyco-Offline. Note that this is rather not a minor
improvement because it is difficult to improve the average
performance of the huge dataset. For example, CS2P [5]
increased the QoE by 3.2% compared with MPC [10], and
ABRL [65] improved the video quality by 1.6% compared
with Pensieve.

VII. DISCUSSION

A. Theoretical Analysis

In this work, the Comyco’s inner-loop method (§IV-A4)
can be defined as a no-regret algorithm because it produces
a sequence of policies π1, π2, . . . , πN such that the average
regret w.r.t the best policy in hindsight goes to 0 as N goes
to ∞: 1

N

∑N
i=1 `i(πi) − minπ∈Π

1
N

∑N
i=1 `i(π) ≤ γN , for

limN→∞ γN = 0. Here `n represents any strongly convex sur-
rogate loss loss functions, such as mean square error and cross
entropy error. The loss function `n is allowed to be optimized
by any optimization algorithm (e.g., Adam). Thus, inspired by
the prior work [38], let π̂i denote the policy that minimizes the
observed loss, we have to bound the total variation distance
between the distribution of states encountered by π̂i and πi as
follows:

Lemma VII.1. ||dπi − dπ̂i ||1 ≤ 2βiT .

Proof. Let dπ denote the average distribution of states if we
follow policy π for T steps, d reflects the distribution of states
over T steps conditioned on πi picking expert’s policy π∗ at
least once over T steps, β represents the probability of πi
selecting π∗. We have:

||dπi − dπ̂i ||1
= ||(1− βi)T dπ̂i + (1− (1− βi)T )d− dπ̂i ||1
= [1− (1− βi)T ]||d− dπ̂i ||1
≤ 2[1− (1− βi)T ]

≤ 2[1− (1− βiT )]

≤ 2βiT.

Notice that in Comyco, βi is NOT a fixed value and is
strongly correlated with the entropy H(·) of the policy πθ:
βi ∝ H(·). Hence, it’s critical to set the proper entropy weight
α in the Comyco’s loss function (§VI-A5).

Let εN = minπ∈Π
1
N

∑N
i=1 Es∼dπi [`(s, π)] the loss of the

best policy in hindsight after N iterations and let `max be an
upper bound on the loss and state s s.t. dπ̂i(s) > 0. We have:

Theorem VII.1. For Comyco, there exists a policy π̂ ∈ π̂1:N

s.t. Es∼dπ̂ [`(s, π̂)] ≤ εN + γN + 2`max

N [nβ + T
∑N
i=nβ+1 βi],

for γN the average regret of π̂1:N .

Proof. As mentioned before, Lemma VII.1 implies that
Es∼dπ̂i [`i(s, π̂i)] ≤ Es∼dπi [`i(s, π̂i)] + 2`max min(1, βiT ).
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minπ̂∈π̂1:N
Es∼dπ̂ [`(s, π̂)]

≤ 1
N

∑N
i=1 Es∼dπ̂i (`(s, π̂i))

≤ 1
N

∑N
i=1[Es∼dπi (`(s, π̂i)) + 2`max min(1, βiT )]

≤ γN + 2`max

N [nβ +
∑N
i=nβ+1 βiT ] + minπ∈Π

∑N
i=1 `i(π)

= γN + εN + 2`max

N [nβ +
∑N
i=nβ+1 βiT ]

Under an error reduction assumption that for any input
distribution, there is some policy π ∈ Π that achieves sur-
rogate loss of ε, which implies we are guaranteed to find a
policy π̂ that achieves ε under H(·) → 0. In Comyco, the
policy’s entropy is allowed to decrease effectively via the cross
entropy method. Moreover, many no-regret algorithms (e.g.,
DAgger [38]) guarantee that if βi is chosen to be the form
of (1 − α)i−1, in which α is a constant hyper-parameter,
then the method need at least Õ(T ) iterations to make γN
negligible.

B. Practical Implementation

Learning-based ABR algorithms are struggling with its
deployability. Specifically, Pensieve [12] is deployed on the
server to avoid high computational costs on the client-side.
However, in practice, most ABR algorithms are executed in
the front-end to avert the extra latency connecting to the back-
end [66], [67]. Thus, such ABR policy frameworks ( [12], [17])
are theoretically effective but impractical [65]. In this paper, as
much as this work is NOT focused on the deployable problem
of learning-based ABR algorithms, we still give some practical
ideas for implementation.
• We argue that deploying the model on the client is imprac-

tical since the computational cost is rather small for today’s
mobile (§VI-A5). What’s more, the user will optionally
download the small-sized model, where the model size is
even 50% smaller than the lowest video chunk size (by
Tensorflow.js [68]).

• Several practical ABR schemes (i.e., PiTree [69], LIME [70]
and ABRL [65]) have been proposed to distill the NN
to a practical decision tree, an interpretable tabular, or a
linear-based formula. Such schemes are also acceptable for
appending into the Comyco system. For example, we use
PiTree [69] to distill the trained Comyco to a decision tree
model and show the CDF results on Figure 22, where the
results are collected under the HSDPA dataset. We can see
that Comyco-Pitree decreases the model size of about 97%
with preserving the overall performance.

• Recent years have also seen several schemes that deploy
the ABR algorithm as a service on the cloud. For example,

Sun et al. [5] assume that throughput factors can be ef-
ficiently captured by Hidden-Markov-Model (HMM), then
they optimize the model on the cloud with huge amounts
of data. Oboe [17] attempts to place a dictionary, mapping
the throughput status {average throughput µ, throughput
variance σ} to the optimized traditional ABRs’ ( [9], [10])
parameters, on the cloud for assisting traditional algorithms
to achieve higher performances in different network condi-
tions. Meanwhile, deploying ABRs on the cloud has also
been considered in the industry. Thomas et al. [71], [72]
proposed the Server and Network-assisted DASH (SAND)
architecture to overcome the fact that the client-driven ap-
proach of DASH left less control to the network and service
providers. RESA [73] employs a learning-based ABR proxy
to make a suitable decision for each client. To this end,
we believe that deploying an ABR service on the server or
edge is also a practical way for today’s device and network
environments.

VIII. RELATED WORK

A. ABR schemes
Client-based ABR algorithms [2] are mainly organized into

two types: model-based and learning-based. The model-based
algorithm uses heuristics to construct a model, as the learning-
based method adopts deep learning to generalize a strategy
from tabular rasa.

Model-based. The development of ABR algorithms begins
with the idea of predicting throughput. PANDA [6] predicts the
future throughput for eliminating the ON-OFF steady issue.
FESTIVE [7] estimates future throughput via the harmonic
mean of the throughput measured for the past chunk down-
loads. However, due to the lack of throughput estimation
method currently, these approaches still result in poor ABR
performance. Meanwhile, most video client leverages a play-
back buffer to store the video content downloaded from the
server temporarily. BBA [8] proposes a linear criterion thresh-
old to control the available playback buffer size. BOLA [9]
turns the ABR problem into a utility maximization problem
and solve it by using the Lyapunov function. However, the
buffer-based approach fails to tackle the long-term bandwidth
fluctuation problem. Hence, mixed model-based approaches,
e.g., MPC [10], select bitrate for the next chunk by adjusting
its throughput discount factor based on past prediction errors
and estimating its playback buffer size. Nevertheless, these
approaches require careful tuning because they rely on param-
eters that are quite sensitive to network conditions, resulting
in poor performance in unexpected network environments.
What’s more, Akhtar et al. [17] propose an auto-tuning method
to improve model-based ABR’s performance.

Learning-based: Several attempts have been made to opti-
mize the ABR algorithm based on the RL method due to the
difficulty of tuning mixed approaches for handling different
network conditions. Pensieve [12] is a system that leverages
RL to select bitrate for future video chunks. D-DASH [13]
uses the Deep Q-learning method to perform a comprehensive
evaluation. Tiyuntsong optimizes itself towards a rule or a
specific reward via the competition with two agents under the
same network condition [15].
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In general, existing ABR algorithms seldom consider the
time vary of network status. In particular, learning-based ABR
schemes fail to tackle the sample efficiency problem.

B. Imitation Learning meets Networking
Imitation learning [74], [75] is the process by which an

agent tries to learn how to perform a certain task using
information generated by another, often more expert agent per-
forming that same task. Till now, imitation learning has been
widely used in various fields including networking scheduling
and network congestion control schemes. Tang et al. [76] pro-
pose a real-time deep learning-based intelligent network traffic
control method to represent the considered Wireless Mesh
Network (WMN) backbone via imitation learning. Indigo [77]
uses DAgger [38] to train a congestion-control NN scheme in
the offline network emulator.

C. Lifelong learning methods
Lifelong learning (or namely continual learning and incre-

mental learning) has become one of the research hotspots
for tackling catastrophic forgetting problem. Recently, several
approaches have been proposed to extend the loss function
with additional terms for guaranteeing the performance on
previous tasks, e.g., Learning without Forgetting (LwF) [23]
uses outputs of the old models as soft targets of old tasks.
These soft targets are considered as a substitute for the
data of previous tasks, which cannot be accessed in lifelong
learning settings. Another kind of lifelong learning methods
estimate the importance of model parameters with specifically
designed mechanisms and apply an individual penalty for
each previous task, including Elastic Weights Consolidation
(EWC) [78], Synaptic Intelligence (SI) and Memory Aware
Synaptic (MAS) [79]. However, such lifelong learning meth-
ods usually suffer from a key issue: one method that performs
well in some experimental settings may fail in others [37].

IX. CONCLUSION

In this work, we propose Comyco, a learning-based ABR
system which aim to thoroughly improve the performance
of learning-based algorithm. In general, Comyco makes the
contributions as follows: First, we construct Comyco as a
video quality-based ABR system, including its NN architec-
tures, datasets and QoE metrics. With trace-driven emulation
and real-world deployment. Second, to overcome the sample
inefficiency problem, we leverage imitation learning method
to guide the algorithm to explore and exploit the better
policy rather than stochastic sampling. Third, through data-
driven analysis we find Comyco should be updated continually
over time. Thus, we present lifelong learning-based Comyco,
aiming to improve its adaption on network status. Massive of
experimental results show that Comyco significantly improves
the performance, effectively accelerates the training process,
and achieves lifelong training on the entire session.

Additional research will focus on i) applying exogenous
features (i.e., date, hour, etc) into the NN, ii) deploying feasible
personalized Comyco framework, iii) demystifying the key
principle of Comyco, as well as iv) developing a practical
scheme for low latency live streaming scenario.
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APPENDIX A
SUMMARY OF STATISTICS FROM THE DATASET

Type Dataset Name
Network Traces FCC [27], HSDPA [26], Oboe [61]

Lifelong Training Traces Kwai (§II)
Video Description Datasets CVDD [54]

QoE Database for ABR SQoEIII [21]
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