
Enhancing the Crowdsourced Live Streaming: a Deep
Reinforcement Learning Approach

Rui-Xiao Zhang∗, Tianchi Huang∗, Ming Ma‡§,Haitian Pang∗, Xin Yao∗,Chenglei Wu∗, Lifeng Sun∗§
∗ Department of Computer Science and Technology, Tsinghua University, Beijing, China

‡ Beijing Kuaishou Technology Co., Ltd., China
{zhangrx17,htc17,pht14,wucl18,yaox16}@mails.tsinghua.edu.cn

maming@kuaishou.com, sunlf@tsinghua.edu.cn

ABSTRACT
With the growing demand for crowdsourced live streaming (CLS),
how to schedule the large-scale dynamic viewers effectively among
different Content Delivery Network (CDN) providers has become
one of the most significant challenges for CLS platforms. Although
abundant algorithms have been proposed in recent years, they
suffer from a critical limitation: due to their inaccurate feature
engineering or naive rules, they cannot optimally schedule viewers.
To address this concern, we propose LTS (Learn to schedule), a
deep reinforcement learning (DRL) based scheduling approach that
can dynamically adapt to the variation of both viewer traffics and
CDN performance. After the extensive evaluation the real data
from a leading CLS platform in China, we demonstrate that LTS
improves the average quality of experience (QoE) over state-of-the-
art approach by 8.71%-15.63%.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Computing
methodologies→ Neural networks.

KEYWORDS
Crowdsourced Live Streaming, Reinforcement Learning, Scheduling

ACM Reference Format:
Rui-Xiao Zhang∗, Tianchi Huang∗, MingMa‡§,Haitian Pang∗, Xin Yao∗,Chenglei
Wu∗, Lifeng Sun∗§. 2019. Enhancing the Crowdsourced Live Streaming: a
Deep Reinforcement Learning Approach. In 29th ACM SIGMM Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSS-
DAV ’19), June 21, 2019, Amherst, MA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3304112.3325607

1 INTRODUCTION
Over the past few years, crowdsourced live streaming (CLS) has
become a novel video service on the Internet, and many CLS plat-
forms, such as Twitch.tv, have shown unprecedented growth across
the world [9]. To guarantee reliable quality of experience (QoE), the

§ Lifeng Sun and Ming Ma are the corresponding authors of this paper.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOSSDAV ’19, June 21, 2019, Amherst, MA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6298-6/19/06. . . $15.00
https://doi.org/10.1145/3304112.3325607

Figure 1: TheworkflowofCLS scheduling. This figure shows
that viewer A, B, and C are watching broadcaster a, b, and c
through CDN A, CDN B, CDN B, respectively.

CLS platforms usually employ multiple Content Delivery Network
(CDN) providers to serve viewers, and at each time, viewer requests
will be scheduled to one of them according to a specific scheduling
strategy. We call this practically-motivated scheduling problem as
CLS scheduling problem, and a typical workflow for CLS scheduling
is shown in Figure 1.

One most unique feature of CLS services is that general users
can broadcast their own contents to numerous viewers, and viewers
will enjoy the streaming entertainment with different devices (a
Mobile phone, an iPad, or a personal computer). Unfortunately, ex-
isting algorithms are incapable of handling the above feature. Most
of the approaches use prediction-based methods to schedule viewer
requests. By making use of historical data, they extract some hand-
craft features to predict the performance of different CDN providers
and redirect viewers to the best one [7, 13]. Nevertheless, these
algorithms require significant tuning, and the insights found in one
scenario may not generalize well in others. To solve these problems,
state-of-the-art work [8] converts the problem into a multi-arms
bandit problem to lessen the prediction bias suffered by previous
approaches, and uses the Upper Confidence Bound (UCB) algorithms
to solve it. However, the simplified performance evaluation method
(e.g., average) and the ignorance of future dynamics from either
viewers or CDN performance make it hard to work.

In this paper, we propose LTS (learn to schedule), a deep reinforce-
ment learning (DRL) based approach to deal with CLS scheduling
problem. Specifically, we will highlight two most fundamental diffi-
culties: 1) How to design an approach which can make decisions
without any human-generated rules and flexibly accommodate to
the constantly changing CDN provider performance. 2) How to

https://doi.org/10.1145/3304112.3325607
https://doi.org/10.1145/3304112.3325607

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA Zhang et al.

design an approach which can well utilize long-term historical in-
formation and automatically cope with different viewer patterns
(e.g., flash crowd).

DRL is suitable for CLS scheduling problem since it can well
tackle the above difficulties: by using the powerful neural network,
it can both make use of the information generated by the environ-
ment and generate decisions without any presumption. DRL is also
promising as it enables the platforms high-levelly control viewer
traffics by just simply defining its own reward function. However,
there are still two main challenges for practical application:

Challenge 1: How to define a proper action space for DRL in
our problem. The action space is the most concerning part when
we apply DRL to practice. In previous work [11], the decision space
can be directly converted to action space as it is small and discrete.
However, in our problem, the decision to be made is the configu-
ration ratio for requests amongm CDN providers in the next time
step, which implies that direct mapping from decision space to
action space will make the action space too large.

Challenge 2: How to solve “safe exploration” problem. To en-
hance DRL model, all DRL agents need to sometimes engage in
exploration, i.e., taking actions that don’t seem optimal in a given
state, but help the agent learn about its environment. In previous
work, it is usually inexpensive to online train their DRL models. For
example, in Atari video games, training a DRL agent needs nothing
but a computer and a camera, and there’s a limit to how bad the
exploration is: getting a low score or losing the game. However, in
our problem, it is much less forgiving to train a DRL model in a real
live streaming environment, since the chosen poor actions during
exploration will make viewers suffer unavoidable QoE degradation,
and cause economic losses. In summary, the main contributions of
this paper are presented as follows:

1. Identifying the inefficiencies of scheduling strategy to-
day: We use a week of real-world live streaming data to profile
the viewer dynamics of CLS, after which we use a case study to
identify the inefficiencies in nowadays scheduling strategy. The
measurement shows that there is a large room for improving the
quality of services.

2. Neural adaptive scheduling system for live streaming:
To well capture the unique features in CLS scheduling problem,
we propose LTS (learn to schedule), a novel request scheduling
approach based on DRL. In details, we adopt A3C [4], an advanced
DRL framework, to solve our problem. Based on the above designs,
LTS can make use of historical information and automatically im-
prove itself without any presumptions (e.g., requests patterns).

3.Data-driven offline simulator: To alleviate the “exploration
safety” problem in real-world training, we build up a realistic offline
simulator to train RL agent, which allows us to validate LTS before
online deployment and effectively avoid choosing the improper
actions. Especially, by using state-of-the-art Neural Arithmetic Logic
Units(NALU) [16], our simulator can well solve the problem of
numerical extrapolation problem caused by data biases.

4. Evaluating LTS in real-world traces: Through the exten-
sive evaluation in real-world traces, we find that LTS can signifi-
cantly outperform state-of-the-art approaches. Specifically, by using
a piece-wise linear simulator, which is toy but interpreting, we show
that LTS can get almost the optimal solution.

Figure 2: The dynamics of viewers

2 RELATEDWORK
Multi-CDN selection: The details of how a particular CLS plat-
form schedules viewers to different CDN providers are uncertain.
However, preliminary measurements have alleviated that in most
cases, the configuration ratio across different CDN providers is
fixed regardless of the dynamics of either CDN or viewer pat-
terns [1, 15]. In recent years, dynamic scheduling has received
more attention. [7, 10] propose model-based methods which up-
date their model through historical data and use the prediction
of the performance of CDN provider to guide scheduling strategy.
However, these methods are significantly affected by the accuracy
of modeling and suffer performance degradation caused by data
bias. To solve the above problems, [8] uses E2 method to replace
traditional model-based methods, which now is the state-of-the-art.

Deep Reinforcement Learning: DRL is now the hot topic in
both industry and academia. DQN proposed in [12] makes it possi-
ble for RL to learn directly from high dimensional inputs, which is
a massive step forward from traditional RL [14]. Based on previous
work, [4] extends one agent training to multiple training, and signif-
icantly fast the convergence time. Besides, DRL is also successfully
applied to other data-driven controlling problem. [19] uses DRL to
solve traffic engineering problem; [17, 18] apply DRL to resource
management problem. In [11], authors use DRL to select the next
time video bitrate. Motivated but different from them, our work is
the first to apply DRL in CLS scheduling problem.

There is also some excellent work focusing on other aspects
of CLS optimization such as video transcoding and new delivery
architectures, and we recommend reader to [5, 20].

3 DATASET AND MOTIVATION
The data used in this paper were collected in cooperation with
Kuaishou1, the leading CLS platform in China. The dataset consists
of over 500M view sessions from 50M viewers and 0.01M channels.
Due to business consideration, we anonymize the name of CDN
providers, provinces, and ISPs (internet service providers). As re-
quired by the data provider, we also use the normalized viewer
number.

We first profile the viewer dynamics of CLS. For all channels,
we define them into four different types: the small channel (SC),
the normal channel (NC), the popular channel (PC) and the flash
crowd channel (FCC). SC represents the channel which has a few
viewers, while PC represents the popular channel with a lot of
viewers. FCC identifies the channel with a large number of viewers
arriving in a short period, and NC denotes the channels other than

1 https://live.kuaishou.com/

Reinforcement Learning for Crowdsourced Live streaming NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

Figure 3: The performance dynamics of different CDN
providers

the above three channel types. In details, we identify them based
on two standards: 1) the growth rate of viewers within a particular
time window. 2) the peak number of concurrent viewers. The first
standard is aimed to identify the “burst event”, while the second
standard is to distinguish channel popularity. After considering all
the channel data in our dataset, we classify the FCCs as those with
more than 20% viewers growth within 10min and more than 5,000
peak viewers. The evolution of these four type channels is shown in
Figure 2, which discloses the following two important observation:
first, FCCs can significantly increase the total number of viewers.
As pointed by the red arrow in Figure 2, we can see that compared
with the peak number of NCs and PCs, the viewer number of FCCs
can increase by more than 50% in about 10 mins; second, the burst
of FCCs can happen during the off-peak period. As denoted, the
burst time (at about 150 min in Figure 2) of FCCs is nearly one hour
before the peak time (at about 200 min in Figure 2).

We also present the dynamics of different CDN providers in
Figure 3. It should be noted that for the limitations of page space,
we only present the average buffering frequency (the details of this
metric is described in §4.3) as the performance estimation, and other
metrics can lead to similar observations. As shown, we can see that
at each time, their performance varies dramatically with time. As
a result, to guarantee better experience, more viewers should be
serv ed by the best CDN provider (e.g., with the lowest buffering
frequency).

These extensive dynamics from viewers and CDN providers
make traditional algorithms hard to cope with. We argue that a
good CLS scheduling algorithm should make decisions with the
inclusion of both viewer patterns and CDN provider performance,
and any simplification of these dynamics will separate them from
the optimal solution. Therefore, previous algorithms are unable to
well solve the problem due to their fixed control laws. To alleviate
these problems, we propose Learn to Schedule (LTS), a DRL-based
approach to solve the CLS scheduling problem.

4 DESIGN OF LTS
We start with a brief introduction to RL: RL is a general framework
which at first represents the problem into the Markov decision pro-
cess (MDP), and then learns to make decisions according to the
observation of previous transition data. A typical RL consists of
following parts: the state space S, the action space A, the reward
R, and the policy π . At each time, after observing the state st ∈ S,
the RL agent will select an action at ∈ A based on the policy π , and
then get a reward r ∈ R. The policy π is what an RL agent needs to

learn through the reward signal. Now, we would like to formulate
CLS scheduling problem by defining its state s ∈ S, action a ∈ A

and reward R, and in this paper, we use A3C [4], which is one of
the most widely-used actor-critic RL frameworks.

4.1 State
We considerm CDN providers for CLS scheduling with an episode
horizonT minutes, and each time step lasts ∆t = 1 min (also works
with other ∆t settings), which means that after T times decisions,
LTS will get the episode terminal, and the system will be reset. In
practice, the horizon T is set to be a single day.

At each time step t , since the state st should take all m CDN
providers into consideration, we denote it as a vector:

−→s t = [ŝ1t , ŝ
2
t , . . . , ŝ

i
t , . . . , ŝ

m
t] (1)

in which ŝit stands for the state of the i-th CDN provider. Moreover,
to allow LTS make use of historical information, we represent ŝit as:

sit = (
−→w i
t ,
−−−→
QoEit) (2)

where the −→w i
t is workload (i.g., the viewer number) of i-th CDN

provider for past k time steps, and −−−→
QoEit stands for the mearsure-

ments of past k QoE metrics considered by CLS platforms (e.g.,
start-up latency).

4.2 Action
The solution space in our problem is the configuration ratio among
m CDN providers. However, different from existing DRL application
problems which usually directly define the action space as the
solution space (e.g., bitrate selection [11]) , the action space in
our problem is continuous and too large to converge. To alleviate
this problem, we decrease the LTS’s action space by discretizing
the solution space at intervals of 1% and design LTS’s action in a
heuristic way. For each CDN provider, there are 3 choices: increase
its configuration ratio by 1%, 5%, and 10% on the basis of the ratio
at the previous time step. This design enables LTS to schedule
viewers through fine-grained action (i.g., 1%) to precisely adjust
the configuration ratio, as well as allowing it accommodate to the
dynamics responsively through coarse-grained action (i.g., 5% and
10%).

As a result, form CDN providers, the action space will be 3 ×m.
At the same time, we also need an action to keep the configura-
tion ratio unchanged, so the total action space will be 3 ×m + 1.
Different from the problem in cloud management [18], in which
the action is defined to change the different parameters (e.g., CPU
number and hard disk storage) independently, the adjustment of
the configuration ratio in our problem should jointly consider all
the CDN providers, as the sum of configuration ratio should be
equal to 1. Therefore, after LTS decides to increase the ratio of
one CDN provider, it also needs to select another CDN provider to
decrease the corresponding part, and in this paper, we choose the
worst CDN provider in the previous time step, since the workload
of the worst provider is the most needed to readjust. For example,
suppose there are a total of 3 CDN providers denoted as A, B, and C;
the configuration ratio in the time step t − 1 is (20%, 30%, 50%); the
measurement shows that the QoE satisfies QoEC < QoEB < QoEA
(i.e., C is the worst CDN provider). Then, if LTS selects the action

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA Zhang et al.

Figure 4: Offline simulator. Comparing with LSTM, our
NALU-enabled neural network structure can well solve ex-
trapolation problem.

increase A by 5%, the configuration in the time step t will become
(25%, 30%, 45%). In this way, we reserve the relationship of different
CDN providers without any pre-selection of the candidates and at
the same time reduce the action space effectively.

4.3 Reward
After each action, LTS will get a reward r which reflects the control
performance. In details, we will consider the reward based on a
weighted sum of following industry-standard QoE metrics [3, 8]:

Startup latency (SLatency): a second-level metric, which rep-
resents the duration between a viewer requests the session and the
video player gets enough data in buffer to play.

Buffering Ratio (Bu f f Ratio): represented as the rate between
the time of buffering and the time of a total session. A buffering
event happens when there is no data in buffer, and the display of
the content will be paused to wait for the next frame. To make this
metric not too small in quantity, here we multiply the ratio with
100, which means the buffering time per 100 seconds.

Buffering frequency (Bu f f Freq): represented as the average
number of buffering events in a live streaming session, which
can be calculated as #buf f er inд events

session time . Note that different from
Bu f f Ratio, which cares about the time spent in interruptions,
Bu f f Freq focuses on the frequency of the interruptions perceived
by viewers. At the same time, we also scale it by multiplying 100,
which means the buffering frequency per 100 seconds. Since all
the above QoE metrics have negative impacts on viewer engage-
ment [3], we use their negative forms to maximize the total reward.
Thus the reward r is formulated as:

r (st ,at) = −αSLatencyt − βBu f f Rattiot − γBu f f Freqt (3)

in which the α , β,γ represent the relative importance for CLS plat-
forms. The objective for LTS is to find the policy π to maximize the
accumulated reward R =

∑T
t=1 r (

−→s t ,at).
The reward function depends heavily on the mapping of the pair

(st ,at) to QoE metrics, which ideally should be provided by the
real-world CLS environment. However, training LTS from scratch
in a real-world scenario is unacceptable: at the start of the training,
it needs to explore some bad choices to learn the dynamics of the
environment, but these poorly chosen actions will redirect viewers
to improper CDN providers, which decreases overall QoE, thereby
making the platform suffer economic losses. To overcome this “safe
exploration” problem, we build up a simulator to offline train and
evaluate LTS.

Methods RMSE

ARMA 0.020
Linear Regression 0.064

LSTM 0.012
NALU-enabled LSTM 0.006

Table 1: Comparing NALU-enabled method with other
widely-used methods using Root Mean Sqare Error (RMSE).

4.4 Offline simulator
Inspired by the recent success of deep neural networks (DNN) in
stochastic timeseries forecast, we are determined to build up a DNN-
based simulator and train it using supervised learning. However,
since our dataset is collected under a fixed strategy used by CLS
platforms, the data are biased, and the simulator will suffer frequent
failures when the input values lie outside the numerical range used
during training. Figure 4 shows an example, and we can find that the
most widely used DNN structures (e.g., Long-Short-Time-Memory)
cannot deal.

To tackle this problem, we use state-of-the-art Neural Arithmetic
Logic Units(NALU) [16] module. By reconstructing the fundamental
arithmetic operations (e.g., subtraction and multiplication) through
a carefully designed network unit, NALU can well solve the extrapo-
lation problem. As shown in Figure 4, our NALU-enabled simulator
quite accurately fits real-world data. We also compare with other
common time series prediction methods, such as Auto Regressive
Moving Average (ARMA) and Linear Regression. The detailed com-
parison results can be obtained in Table 1.
5 EVALUATION
5.1 Methodology
Implementation: We start with providing the implementation
details. The parameters for reward function is (α = 1, β = 1,γ = 1).
We considerm = 3 CDN providers, which is a common configura-
tion for CLS platforms [2]. At time step t , for each CDN provider i ,
LTS will input k = 20 past workload −→w i

t and
−−−→
QoEit measurements

to a 2D convolution layer (CNN) with 64 filters, each of size 4 and
stride 1. Then the outputs of these layers are aggregated in a hidden
layer that uses 64 units to apply the softmax activation function.
The critic network has the same network structure except for its
final output which is a linear activation function. The learning rates
for actor and critic networks are 0.0001 and 0.001 respectively. The
discounted factor is 0.99 and minibatch size is 20. The simulator
has two LSTM layers of size 128 and 64, and then cascaded by a
NALU-enabled layer. Training details of A3C can be found in [4, 11].

The experiments are conducted on real-world CLS data, spanning
one week (6 days for training and 1 day for test). At each time, we
select 3 candidates from a total of 4 different CDN providers, and
we fit a separate simulator for each of them.

Baseline algorithms:We compare our DRL-based framework
with the following baselines:

• The original algorithm: the strategy used by the data provider.
Actually, we don’t exactly know its strategy, but the result
of which can be directly obtained from collected data.

• Best weighted round-robin: At each time, the requests are
redirected to different CDN providers in a static ratio. This
algorithm is called Weighted round-robin [1] which is the

Reinforcement Learning for Crowdsourced Live streaming NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

ABC BCD ACD ABD

Combinations of CDN providers

0

1

2

3

4

S
ta

rt
u

p
 l
a

te
n

c
y
 (

s
)

Origin RoundRoubin 1-UCB D-UCB LTS

(a) Startup latency

ABC BCD ACD ABD

Combinations of CDN providers

0

0.5

1

1.5

2

2.5

3

3.5

B
u

ff
e

ri
n

g
 r

a
ti
o

 (
s
/1

0
0

s
)

Origin RoundRoubin 1-UCB D-UCB LTS

(b) Buffering ratio

ABC BCD ACD ABD

Combinations of CDN providers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

B
u

ff
e

ri
n

g
 f

re
q

u
e

n
c
y
 (

ti
m

e
s
/1

0
0

s
)

Origin RoundRoubin 1-UCB D-UCB LTS

(c) Buffering frequency

ABC BCD ACD ABD

Combinations of CDN providers

-8

-6

-4

-2

0

Q
o

E

Origin RoundRoubin 1-UCB D-UCB LTS

(d) Average QoE

Figure 5: Comparison results. The Evaluation on real-world traces shows that LTS outperforms state-of-the-art algorithm by
8.71%-15.63% on QoE. Especially, LTS consistently outperforms baselines on all three QoE metrics.

Figure 6: Converge of LTS.We can see that LTS exceeds state-
of-the-art baseline in less than 700 steps.

most widely used technique for solving this problem. Re-
markably, in our experiment, we use the grid search to find
the best distribution ratio. In other words, we use the “best”
weighted round-robin algorithm.

• Exploitation and Exploration (E2) algorithm: a state-of-the-
art algorithm applied by [8]. At each time, E2 algorithm will
use the average-like method to estimate CDN provider per-
formance, and choose the one with the highest upper confi-
dence bound of reward, which will naturally choose the CDN
provider with high expected performance or high uncer-
tainty. In our experiment, we use UCB-1 [14] and Discounted-
UCB [6], both of which are using moving average to estimate
the expected performance, and the difference is the latter
gives more weight to more recent measurements.

5.2 Results and discussion
The results are presented in Figure 5, and we can find the following
two key observations. First, comparing with the baseline algorithms,
LTS exceeds the performance of the best existing algorithms. For
example, in combination (CDN provider A, CDN provider B, CDN
provider C), which is denoted ’ABC’, LTS outperforms the four
baselines by 26.52%, 13.40%, 8.71%, 14.08% respectively in average
QoE. Since the original algorithm (the blue bar) performs the worst,
we guess that the platform still uses the “round-roubin”-like al-
gorithm, namely scheduling viewers to different CDN providers
according to a static distribution ratio. Notably, after comparing
with the origin algorithm with the best weighted round-roubin (the

orange bar), we find that even for static methods, the performance
can vary significantly.

However, these static methods still perform unsatisfactorily. The
reason is obvious: they ignore the dynamics of the viewers, and can-
not capture the performance changes of different CDN providers.
For UCB-1 and Discounted-UCB, a critical limitation also separates
them from the optimal solution: since they use a straightforward
way to estimate the changes of either workload patterns or CDN
provider performance (e.g., moving average), they cannot well uti-
lize the historical information. Meanwhile, the ignorance of future
dynamics also makes them hard to adapt to the request dynamics
responsively. With the help of the deep neural network, LTS can
automatically learn the environment dynamics and act accordingly,
thus outperforming all baseline algorithms.

Second, we observe that the performance of existing algorithms
struggles for different CDN provider combinations. For example,
the best weighted round-robin algorithm is the best baseline for
the combination ABC, while for BCD, the best becomes D-UCB.
The reason is that these algorithms make decisions in fixed control
laws, however for different CDN providers, the strategy should
be inherently different: for the small CDN providers, since the
performance of them is less stable and more sensitive to viewer
numbers, the strategy should be much more conservative to avoid
violating the viewers served by them. LTS can capture the dynamics
of both viewers and CDN providers and thus, performance with
LTS remains consistently high for different CDN combinations.

Besides, we also present the training process in Figure 6. As
shown, LTS outperforms the original algorithm in less than 500
steps and exceeds the best D-UCB algorithm in less than 700 steps.
In our experiment, LTS converges in less than 3000 epochs, which
needs about 3 hours.

5.3 Validation through a toy model
Although the NALU-enabled simulator can well capture the dynam-
ics of CDN performance, the complex network structure makes the
prediction results of the simulator hard to understand and incapable
of obtaining the optimal solution. To better validate the effective-
ness of LTS, we replace the NALU-enabled simulator with a less
precise but more explainable one. In details, as presented in [10],
CDN performance (e.g., buffering ratio) and the number of serv-
ing people (workload) are highly correlated, and the relationship
can be approximated by a piecewise function: when the workload
exceeds a certain threshold, the CDN performance will degrade

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA Zhang et al.

(a) Piecewise linear model (b) The strategy of LTS (c) The strategy of the optimal algorithm

Figure 7: The result of linear piecewise simulator. To better understand the effectiveness of LTS, we use the piecewise linear
function as the core of the offline simulator, which is less precise but more explainable. The results show that LTS can get
almost the optimal solution.

significantly. For simplicity, we use a piecewise linear model to
characterize this relationship and use the greedy search at each
time to get the optimal solution.

Note that the network structure of LTS remains unchanged,
and LTS has no knowledge about the linearity of our simulator. We
present the decisions made by LTS every moment in Figure 7. Figure
7(a) shows the linear model used; Figure 7(b) and Figure 7(c) show
the decisions made by LTS and the offline optimal, respectively.

As expected, we can find that LTS can generate almost the opti-
mal strategies in the piecewise linear model. Note the three enclosed
parts in Figure 7(a), each of them represents the different environ-
ment state. The first part represents the state when total workload
is light, and as shown in Figure 7(c), during this period, the best
strategy is to schedule as many viewers as possible to the best
CDN provider, namely CDN C. The second part represents the state
when total workload increases to a middle level, and at this time,
redirecting total requests to CDN C will cause its buffering ratio
increase significantly. Therefore, the best choice is to ask another
CDN provider for help. Since CDN B performs better than CDN A,
just like the decision made by the offline optimal, we should choose
CDN B. The last part shows the state when the total workload is
heavy. At this time, CDN A will perform better than CDN B and
CDN C, so more requests should be scheduled to CDN A. Encour-
agingly, as shown in Figure 7(b), LTS can capture the three pivotal
states and make almost the optimal decisions only through raw
data without any previous knowledge and presumptions.

6 CONCLUSION
In this paper, we propose LTS, a deep reinforcement learning based
approach, to dynamically schedule viewers for CLS. Unlike previous
algorithms which use imprecise models or naive strategies, LTS can
generate scheduling decisions through raw input data and adapt
itself to the environment. Through extensive trace-driven evalua-
tions, we demonstrate LTS outperform the best existing algorithms
significantly.
Acknowledgment. This work was done in close cooperation with
Kuaishou Technology Co., Ltd., andwas part-funded by theNational
Natural Science Foundation of China (No.61521002), Beijing Key
Laboratory of Networked Multimedia (No.Z161100005016051) and
Key Research and Development Project (No. 2018YFB1003703).

REFERENCES
[1] Vijay Kumar Adhikari and et al. 2012. Unreeling netflix: Understanding and

improving multi-cdn movie delivery. In INFOCOM, 2012 Proceedings IEEE. IEEE,
1620–1628.

[2] Vijay Kumar Adhikari et al. 2012. A tale of three CDNs: An active measurement
study of Hulu and its CDNs. In Computer Communications Workshops (INFOCOM
WKSHPS), 2012 IEEE Conference on. IEEE, 7–12.

[3] Florin Dobrian and et al. 2011. Understanding the impact of video quality on
user engagement. In ACM SIGCOMM Computer Communication Review, Vol. 41.
ACM, 362–373.

[4] Mnih et al. 2016. Asynchronous methods for deep reinforcement learning. In
International Conference on Machine Learning. 1928–1937.

[5] Chen Fei et al. 2015. Cloud-assisted live streaming for crowdsourced multimedia
content. IEEE Transactions on Multimedia 17, 9 (2015), 1471–1483.

[6] Aurélien Garivier and Eric Moulines. 2008. On upper-confidence bound policies
for non-stationary bandit problems. arXiv preprint arXiv:0805.3415 (2008).

[7] Junchen Jiang et al. 2016. CFA: A Practical Prediction System for Video QoE
Optimization.. In NSDI. 137–150.

[8] Junchen Jiang et al. 2017. Pytheas: Enabling Data-Driven Quality of Experience
Optimization Using Group-Based Exploration-Exploitation.. In NSDI, Vol. 1. 3.

[9] Jessica Klein. 2018. Twitch Ended 2017 With 15 Million Daily Vis-
itors, 27K Partnered Streamers. https://www.tubefilter.com/2018/02/06/
twitch-2017-year-in-review/. Accessed February 6, 2018.

[10] Xi Liu et al. 2012. A case for a coordinated internet video control plane. ACM
SIGCOMM Computer Communication Review 42, 4 (2012), 359–370.

[11] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 197–210.

[12] Volodymyr Mnih et al. 2015. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529.

[13] Mark Stemm and et al. 2000. A network measurement architecture for adaptive
applications. In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, Vol. 1. IEEE, 285–294.

[14] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[15] Ruben Torres et al. 2011. Dissecting video server selection strategies in the
youtube cdn. In Distributed Computing Systems (ICDCS), 2011 31st International
Conference on. IEEE, 248–257.

[16] Andrew Trask et al. 2018. Neural arithmetic logic units. In Advances in Neural
Information Processing Systems. 8046–8055.

[17] Yifei Wei and et al. 2018. User Scheduling and Resource Allocation in HetNets
With Hybrid Energy Supply: An Actor-Critic Reinforcement Learning Approach.
IEEE Transactions on Wireless Communications 17, 1 (2018), 680–692.

[18] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. 2012. URL: A unified reinforcement
learning approach for autonomic cloud management. J. Parallel and Distrib.
Comput. 72, 2 (2012), 95–105.

[19] Zhiyuan Xu and et al. 2018. Experience-driven networking: A deep reinforcement
learning based approach. arXiv preprint arXiv:1801.05757 (2018).

[20] Zhu Yifei and et al. 2017. When cloud meets uncertain crowd: An auction
approach for crowdsourced livecast transcoding. In Proceedings of the 25th ACM
international conference on Multimedia. ACM, 1372–1380.

https://www.tubefilter.com/2018/02/06/twitch-2017-year-in-review/
https://www.tubefilter.com/2018/02/06/twitch-2017-year-in-review/

	Abstract
	1 Introduction
	2 Related work
	3 Dataset and Motivation
	4 Design of LTS
	4.1 State
	4.2 Action
	4.3 Reward
	4.4 Offline simulator

	5 Evaluation
	5.1 Methodology
	5.2 Results and discussion
	5.3 Validation through a toy model

	6 Conclusion
	References

