
TOWARDS QOS-AWARE CLOUD LIVE TRANSCODING:
A DEEP REINFORCEMENT LEARNING APPROACH

Zhengyuan Pang1, Lifeng Sun1, Tianchi Huang1, Zhi Wang2, Shiqiang Yang1

1 Department of Computer Science and Technology, Tsinghua University
2Graduate School at Shenzhen, Tsinghua University

{pangzy12@mails., sunlf@mail., htc17@mails., wangzhi@sz., yangshq@mail.}tsinghua.edu.cn

ABSTRACT

Video transcoding is widely adopted in live streaming ser-
vices to bridge the format and resolution gap between con-
tent producers and consumers (i.e., broadcasters and view-
ers). Meanwhile, the cloud has been recognized as one of
the most reliable and cost-effective ways for video transcod-
ing. However, due to the dynamic and uncertainty of the
transcoding workloads in live streaming, it is very challeng-
ing for cloud service providers to provision computing re-
sources and schedule transcoding tasks while guaranteeing
the Service Level Agreement (SLA). To this end, we propose
a joint resource provisioning and task scheduling approach
for transcoding live streams in the cloud. We adopt Deep Re-
inforcement Learning (DRL) to train a neural network model
for resource provisioning under dynamic workloads. More-
over, we design a QoS-aware task scheduling algorithm that
maps transcoding tasks to Virtual Machines (VMs) by con-
sidering the real-time QoS requirement. We evaluate our ap-
proach with trace-driven experiments and the results demon-
strate that our approach outperforms heuristic baselines by up
to 89% improvements on average QoS with 4% extra resource
overhead at most.

Index Terms— Cloud transcoding, live streaming, deep
reinforcement learning, resource provisioning

1. INTRODUCTION

Nowadays online live streaming service has become enor-
mously popular, such as Twitch, YouTube Live, and so on.
On these platforms, numerous viewers watch online videos
produced by large amounts of amateur broadcasters (e.g.,
gamers, dancers, etc.). As the devices used by broadcast-
ers and viewers get increasingly more diverse, it becomes
necessary to transcode video contents into different qual-
ity versions, and deliver appropriate versions to viewers to
match their device and network characteristics. Since video
transcoding is extremely computation-intensive and requires
a huge amount of hardware, cloud computing offers a natural
way to solve this problem due to its elasticity and the “pay-
as-you-go” billing model. With the rapid growth of this mar-

ket, many cloud service providers such as Amazon, Azure,
etc, have delivered cloud transcoding services to assist live
streaming platforms handling their transcoding tasks.

Cloud service providers offer transcoding services to their
users with a specific guarantee of the Quality of Service
(QoS), which also appears as the Service Level Agreement
(SLA) [1]. For instance, live content must be transcoded
in real-time. However, the transcoding workloads of live
streams are dynamic and uncertain, which makes it a great
challenge for cloud service providers to provision computing
resources and schedule transcoding tasks while meeting the
SLA requirement.

First, broadcasters could start or end uploading streams at
any time and the uploaded video streams have various qual-
ity levels, with a variety of resolutions, bit-rates, etc. There-
fore, the cloud service providers are not aware of how many
resources will be needed by transcoding tasks at the next mo-
ment. In Fig. 1 we illustrate the uncertainty of broadcast-
ers and the diversity of the uploaded videos using a dataset
collected on Kuaishou, one of the most popular live stream-
ing platforms in China. We observe that the bit-rates of up-
loaded streams cover a wide range from 10 to more than 6000
kbps and the broadcasting durations vary from minutes to
hours. Second, in live streaming, the execution time of each
transcoding task is unknown until the task is completed [2],
which makes it different from the case of Video on Demand
(VoD). Therefore, it is challenging for cloud service providers
to schedule transcoding tasks with unknown execution time
while meeting the real-time requirement.

Many recent research works have focused on the prob-
lem of resource provisioning and QoS management for cloud
transcoding. However, most of the existing works tried to
solve the problem in VoD streaming, in which the transcod-
ing workloads are known in prior and the exact transcoding
time of a source video is estimated by empirical study [3]
or from the historical execution information of the video [4].
Moreover, most of the previous works did not consider sys-
tem uncertainties such as the variation of transcoding speed
or the Virtual Machine (VM) startup time, which could make
significant impact on the real-time requirement.

10
1

10
2

10
3

10
4

Video bit-rate (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 d
at

a
re

co
rd

s 1080p
720p
480p
360p

(a) Video bit-rates distributions
of different resolutions.

0 200 400 600
Broadcast Duration (minute)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

 B
ro

ad
ca

st
er

s
(b) Distribution of the

broadcasting durations.

Fig. 1: Statistics of live broadcasting dataset.

In this paper, we attempt to solve the problem of pro-
visioning computing resources under dynamic and uncer-
tain transcoding workloads as well as scheduling transcod-
ing tasks with unknown execution time and real-time QoS
requirement. Recent breakthroughs of Deep Reinforcement
Learning (DRL) in complicated control problems [5] [6]
prove that DRL is well suited for decision making in a com-
plex, uncertain environment without any explicit assumptions
about the environment. Inspired by these results, we are mo-
tivated to enable DRL for dynamic resource provisioning in
the cloud.

To this end, we propose a joint resource provisioning and
task scheduling approach for transcoding live streams in the
cloud. We use DRL to train a neural network (NN) model
that periodically makes resource provisioning decisions. The
system uncertainties are taken into consideration in the de-
sign of the simulation environment for training the model.
Moreover, we propose a method to estimate the bounds of
the transcoding time. Based on the bounded estimations, we
design a transcoding task scheduling policy which is aware of
the real-time QoS requirement.

In summary, this paper makes the following contributions:
• We propose a joint resource provisioning and task

scheduling approach for cloud live transcoding with
strict SLA requirement.

• We design a DRL-based method for resource provision-
ing under dynamic transcoding workloads.

• We present a QoS-aware task scheduling algorithm to
map transcoding tasks to VM instances by considering
the real-time QoS requirement.

• The results of trace-driven experiments show that our
approach achieves up to 89% improvements on average
QoS with only 4% extra resource overhead.

2. SYSTEM MODEL AND WORKFLOW

In this section, we introduce the system model and describe
the system workflow.
Time model: Similar to [7], we consider a two-level time
model which is adapted to our system. At the first level, we
adopt a discrete time model, where the time slot is denoted

Environment

Scheduler

Task

Queue

Video chunks

VM

Agent

State

Neural

Network
VM Privisioning

Policy()

Turnon X VMs

Turnoff Y VMs

No Change

Action a

Reward r

Provisoner

Fig. 2: Overview of the system workflow.

as t = 0, 1, 2.... Each time slot is T seconds long. Unless
otherwise noted, we use the term “time slot t” and “time step
t” interchangeably in the rest of our paper. At the second level
within each time slot, we use a continuous time model, where
the system time is denoted as t̂.
VM model: We consider a cloud system with M VM in-
stances with homogeneous computing performance. Let V =
{vm1, vm2, ..., vmM} be the whole VM instance set. At any
time t̂, a VM instance vmi can be active or turned off. When
an active VM instance is idle, it can be assigned a new task
by the task scheduler.
Video model: A live video stream vi is segmented into a
set of consecutive video chunks vij with equal duration τ .
Each video chunk will be transcoded into a set of prede-
fined formats. We define a transcoding pattern as a tuple
of source chunk format and target chunk format, denoted by
p := {source resolution, source bit-rate, target resolution, tar-
get bit-rate}. We denote the transcoding task of chunk vij in
pattern p as xpij , or simply x for short.
Cost model: The system cost is comprised of the computing
cost of active VM instances and the QoS cost caused by vio-
lating the real-time constraint. The overall computing cost in
time slot t can be calculated as:

c(t) = cv · nt, (1)

where cv is the computing cost incurred by an active VM in-
stance in one time slot and nt is the number of active VM
instances in time slot t.

In live video streaming, due to the real-time constraint, the
transcoding task for each video chunk has an individual hard
deadline related to the presentation time of the chunk. We
denote the number of tasks missing the deadlines in time slot
t as yt, and the total number of tasks in t as zt. The QoS cost
in one time slot can be represented by the deadline violation
percentage (DVP), which is calculated as:

d(t) = yt/zt · 100%. (2)

It is worth noting that since cloud service providers make the
SLA with their users, there is a threshold η of the deadline
violation percentage. Specifically, if the SLA of transcoding
service is φ (in percentage), η = (100−φ)% and d(t) should
not exceed η.
System workflow: As shown in Fig. 2, in DRL, the system
consists of two components: the environment and the agent.

The environment includes a task queue Q, a task scheduler
and M VM instances, while the agent refers to the resource
provisioner. The agent trains the NN model in an offline fash-
ion by experiencing historical transcoding task traces and use
the trained model to make online resource provisioning deci-
sions. At each time step t, the agent observes a set of met-
rics as the state st of the environment. The neural network
then output action at based on the state, which determines the
number of active VM instances in the next time slot. Within
the time slot, transcoding tasks of arrived video chunks are
put into the task queue and dispatched to idle VM instances
by the scheduler. After that, the state of the environment
transits to st+1 and the overall system cost is passed to the
agent as the reward rt. The objective of the learning process
is to maximize the expected cumulative discounted reward
E[
∑∞
t=0 γ

trt], where γ ∈ (0, 1] is the discounting factor.

3. DRL-BASED RESOURCE PROVISIONING

In this paper, instead of using preset rules in the form of fine-
tuned heuristics, we attempt to let the neural network learn
a resource provisioning policy purely through experience. In
this section, we describe the design and implementation of
our DRL based resource provisioning algorithm.
Simulation environment: To accelerate the training process,
we need to design a simulation environment that faithfully
models the real world workflow and system behaviors. We
build up the simulation environment based on the system
model introduced in Sec. 2. The details of the environment
are present below.

Table 1: Transcoding Templates

Source Resolutions Source Bit-rates (kbps) Target Formats

1080p 3000∼ 6000 720p, 2500 kbps
1080p 3000∼ 6000 480p, 1500 kbps
720p 2000∼ 4000 480p, 1500 kbps

To simulate the transcoding time, we measure the exe-
cution time of converting a set of videos into different for-
mats. Following the recommendations of live encoder set-
tings on YouTube [8], we define three transcoding templates
in our system. The characteristics of the templates are given
in Table. 1. As an example, the first row in Table. 1 means
that source chunks with 1080p resolution and bit-rates rang-
ing from 3000 to 6000 kbps will be transcoded into chunks
with 720p resolution and 2500 kbps bit-rate. We use the video
dataset provided by [9], which contains twenty high-quality
1080p videos of different content types and all the videos
have an equal length of 10 seconds. We convert the videos
in the dataset to the source formats defined in Table. 1, which
generates 1040 CBR videos. Then we measure the transcod-
ing time of these videos using the templates in Table. 1 with
FFmpeg. Each experiment is repeated 30 times and the mean

value is taken. With the measurements, the execution time
g(x) of the transcoding task x is set up as follows:

First, we select the measured results under the same
transcoding pattern of x, denoted by mp. Then we calculate
the mean and standard deviation of mp, denoted by mµ

p and
mσ
p respectively. Finally, we randomly sample a bias e from

[-mσ
p , mσ

p] and set g(x) = mµ
p + e.

To simulate the VM startup time, we adopt the results in-
troduced in [10], where the boot time of a VM instance is
between 2.5 and 5.5 seconds in general. In our environment,
when a VM instance is turned on, we sample a random value
from [2.5, 5.5] under uniform distribution as the startup time.
State: We define the workloadwt of time slot t as

∑
g(x)/T ,

where x is the task arriving within t. At each time step, the
agent feeds input state st = {~wt, dt, nt} to the neural net-
work, where ~wt is the workloads for the past k time slots; dt
is the deadline violation percentage in the last time slot; nt is
the number of active VM instances in the last time slot.
Action: After receiving st, the agent takes an action at under
policy π, which is the resource provisioning decision of the
next time slot. Intuitively, the simplest way to set the action
space is directly letting at = nt+1. However, it will signifi-
cantly increase the size of the action space, which could make
the training process difficult to converge. To this end, we set
the action to be the number of VMs which are turned on or
shutdown in the next time slot. Specifically, at ∈ [−N,N] is
an integer and defined as:

at :=


turn at VMs on, if at > 0,

do nothing, if at = 0,

turn at VMs off, if at < 0,

(3)

where N is a hyper-parameter that controls the maximum
variation of active VMs.
Reward: Rewards are fed back to the agent with a delay as
signals reflecting the inherent impacts of different actions on
the overall system cost. We define the reward at each time
step as:

rt = −c(t)/wt − λ · f(d(t)), (4)

where λ is the tuning parameter, and f(d(t)) is defined as:

f(dt) =

{
ε · d(t) d(t) < η,

d(t) otherwise,
(5)

where ε < 1 is the discounting factor. Note that by divid-
ing wt, the first term in Eq. 4 represents the VM provision-
ing efficiency under different workloads, and the second term
takes into account the SLA requirement by downscaling the
QoS cost when the deadline violation percentage is below the
threshold.
Training: After applying each action, the agent receives re-
ward rt from the environment. The training process of the
agent is to continuously modify the parameters of the neural
network so that the neuron-represented policy πθ is revised on
the direction that maximizes the accumulated reward. In our

FC

FC

CNN

FC

FC

M
E
R
G
E

FC

FC

...

Past workload

Last active VM number

wt-k+1 wt-k+2 ... wt-1 wt

nt

Last deadline violation ratio

dt

State st

Policy

(st, at)

Value

V (st)

Actor Network

Critic Network

CNN
M
E
R
G
E

Fig. 3: The Actor-Critic algorithm of resource provisioning.

paper, we use A3C[11], a state of the art actor-critic learning
method, as our training algorithm, where the policy training
is done by performing policy gradient method. Specifically,
as shown in Fig. 3, the neural network is comprised of an
actor-network and a critic-network, parameterized by θ and
θv respectively. The output of the actor-network is the pol-
icy πθ(st, at) for selecting the action at in state st, which
is represented by the adjustable parameters θ of the actor-
network. The output of the critic-network is a value func-
tion V πθ (s; θv), which is the estimation of the expected to-
tal reward starting at state s and following the policy πθ. In
A3C, there are multiple agents training the neural network in
parallel, each of them owns an independent copy of the neu-
ral network and the simulation environment but experiences a
different set of input traces. Inspired by [5], we use a central
agent to update the parameters of the neural network periodi-
cally. At every time step during training, each agent collects a
tuple of {st, at, rt}. After every n steps, the agents send the
collected tuples to a central agent, which aggregates them to
perform a batch update to θ and θv . Each update of the actor-
network parameter θ follows the policy gradient, which is the
direction of increasing the accumulated reward. According to
[11], the update of θ can be calculated as:

θ ← θ+α
∑
t

∇θlogπθ(st, at)A(st, at) +β∇θH(πθ(·|st)),

(6)
where α is the learning rate of the actor network, β is a hyper-
parameter, A(st, at) is the advantage function defined as:

A(st, at) = rt + γV πθ (st+1; θv)− V πθ (st; θv), (7)

and H(·) is the entropy of the policy. The update of θv is
calculated by Temporal Difference method[12] as follow:

θv ← θv − α′
∑
t

∇θv
(
A(st, at)

)2
, (8)

where α′ is the learning rate of the critic-network. More de-
tails of the A3C algorithm can be found in [11].
Neural Network: As shown in Fig. 3, in the actor-network,
variables of st are pushed into a 1D convolution (CNN) layer
and two fully-connected (FC) layers separately. The CNN

layer has 128 filters, each of size 4 with stride 1. The outputs
of these layers are then merged and passed to the last FC layer
with 128 neurons to form the results. Note that a softmax
function is applied to the output of the last FC layer to get a
normalized probability distribution over the action space. The
critic-network has the same network structure as the actor-
network, with the final softmax function replaced by a linear
neuron.

4. QOS-AWARE TRANSCODING TASK
SCHEDULING

In this section, we describe the transcoding task scheduling
policy in the system. Let t̂aij be the arrival time of video chunk
vij . For any x generated from vij , we denote the deadline of
x as bd(x), which is the presentation time of vij and can be
calculated as: bd(x) = t̂aij + δ, where δ is the broadcasting
delay configured by live service providers.

In live video streaming, the execution time of a transcod-
ing task is unknown until the task is completed. To estimate
the transcoding time, we follow the conclusion in [2] that
the transcoding time of a chunk has a correlation with the
transcoding time of other chunks within the same stream. It
is reasonable because chunks of the same live stream usually
have similar contents, such as game scenes or dancing rooms.
Moreover, taking into consideration of system uncertainties,
we estimate the upper and lower bounds of the execution time
of transcoding tasks instead of the exact values. Specifically,
the estimated upper bound of g(x), i.e., the execution time of
task x, is calculated as :

gu(xpij) = P95th

(
{g(xpiq),∀q < j}

)
, (9)

where P95th(X) means the 95th percentile of the set X . Sim-
ilarly, the estimated lower bound of g(x) is calculated as:

gl(xpij) = P5th

(
{g(xpiq),∀q < j}

)
. (10)

It is worth noting that the estimated upper and lower bounds
represent the worst and best case estimations of the transcod-
ing time respectively, and they are known prior to the execu-
tion of x. Then, we define the priority of task x as1:

bu(x) := bd(x)− gu(xpij), (11)

and the bottom line of task x as:

bl(x) := bd(x)− gl(xpij). (12)

Note that the bottom line bl(x) represents the latest time point
that the task could meet the deadline.

We design our QoS-aware task scheduling policy based on
bd(x), bu(x) and bl(x), which is detailed in Alg. 1. Basically,
tasks with smaller bu(x) should be scheduled preferentially
because the time they could wait in the task queue before the

1We assume that gu(x) <= δ, which means that the worst case transcod-
ing time of a chunk should not exceed the broadcasting delay.

Algorithm 1: QoS-Aware Task Scheduling Policy

input :
t̂ : current system time

Qt : current task queue
Vt : current VM instance set

output:
ρ : task scheduling policy

1 for each x ∈ Qt do
2 if bl(x) ≤ t̂ then
3 Discard x

4 for each vmi ∈ Vt do
5 if task x is on vmj and bd(x) < t̂ then
6 Discard x

7 while there is any idle vmi do
8 Find x with the minimum bu(x) in Qt
9 Dispatch x to vmi

deadlines is shorter. When a task executing on a VM instance
misses the deadline bd(x), it will be discarded immediately,
because there is no value for the task to continue. Moreover,
tasks missing the bottom line bl(x) while still waiting in Q
will be discarded either, since it is likely that they will miss
the deadlines as well.

5. PERFORMANCE EVALUATION

In this section we first introduce the dataset and experiment
settings, then we evaluate the performance of our approach
and compare it to baseline methods.

5.1. Dataset and Experiment Settings

Dataset: To evaluate the performance of our approach on
real world live streaming workloads, we use a broadcast-
ing dataset collected on Kuaishou, as mentioned in §1. The
dataset contains 1.3 million broadcasting traces in one month
(March 2018 - April 2018). Each trace item records the start
timestamp, the duration, the resolution and the bitrate of one
live stream.
Experiment Settings: We generate transcoding workloads
from the dataset above. We randomly select 10% from
streams with 1080p and 720p resolutions respectively. The
selected streams are then segmented into a series of 10-
seconds video chunks. Each chunk generates a set of
transcoding tasks based on its format and the transcoding
templates introduced in Sec. 3, which end up with 21 mil-
lion transcoding tasks. We randomly create 2000 task traces
from this task set to form our corpus, with each trace span-
ning one hour. Unless otherwise noted, we randomly split
the corpus into training (80%), validation (10%), and test
(10%) sets. Note that the validation set is used for tuning

Avg. VM Cost. Avg. QoS Cost.0

10

20

30

40

50

60
Offline
DRL
Load-based
Reactive

(a) Average cost of all test traces.

1 3 5 7
Deadline Violation Percentage (%)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio
n
of
 T
es
t T

ra
ce
s

Offline
DRL
Load-based
Reactive

(b) QoS cost distributions.

Fig. 4: Comparing the system cost under different resource
provisioning policies.

Table 2: Simulation Parameters Setting.

Parameter Value Parameter Value

Time slot length: T 60 seconds VMs in the system: M 100
Video chunk duration: τ 10 seconds Unit computing cost: cv 1
Broadcasting delay: δ 5 seconds Cost tuning parameter: λ 3
QoS threshold: η 1% Action bound: N 3
DRL parameters: k=16, n=60, ε=0.01, α=1e-4, α′=1e-3, γ=0.9, β=0.5

hyper-parameters and the final performance comparison is
conducted on the test set. During training and testing, we
set the SLA requirement φ to 99% according to current in-
dustrial schemes [1]. The default values for other parameters
in our experiments are summarized in Table 2. The train-
ing process takes 6 hours to converge with 10 agents working
asynchronously. After the training is converged, we use the
trained model to make decisions on the test set. The average
execution time of one decision step is 5 milliseconds, which
is acceptable in a real world system.

5.2. Comparison with Baseline Methods

Comparison of Resource Provisioning Policy: We com-
pare the system cost under our DRL-based resource provi-
sioning policy with the following baselines: 1) The Offline
Policy (Offline) which knows the future workload informa-
tion in prior and set nt to be the minimum number that will
not lead to d(t) > η. In our experiments, the offline pol-
icy provides the upper performance bound of resource provi-
sioning. 2) The Workload based Policy (Load-based) which
set nt according to the workload of the last time slot, i.e.,
nt = dwt−1e. 3) The Dynamic Provisioning Policy (Reac-
tive) proposed in [4] which allocates VM instances when d(t)
exceeds an upper bound threshold and deallocates one VM
when d(t) is less than a lower bound threshold. In our exper-
iments, we set the upper and lower bounds in this method as
0.8 · η and 0.5 · η respectively.

The average system cost with different resource provi-
sioning methods on our test set is shown in Fig. 4(a), where
the average QoS cost is converted to per-mille value, i.e.,
d(t) · 10 ‰ , for clarity. We can observe that the DRL-
based policy achieves much better QoS than the two heuristic
methods with close average VM cost. Specifically, compared

2.0 2.5 3.0 3.5 4.0
λ

0.0

0.1

0.2

0.3

0.4

A
vg

. Q
oS

 C
os

t (
%

)

QoS Cost
VM Cost

32

33

34

35

A
vg

. V
M

 C
os

t

Fig. 5: The impact of the tun-
ing parameter λ.

0 2 4 6 8 10
Deadline Violation Percentage(%)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio
n
of
 T
es
t T

ra
ce
s

QoS-Aware
FCFS
EDF
SJF

Fig. 6: QoS cost under differ-
ent task scheduling schemes.

to the Load-based policy and the Reactive policy, the aver-
age deadline violation percentage under the DRL-based pol-
icy decreases up to 89% while the average VM cost increases
4 % at most. Furthermore, we present the distributions of
the deadline violation percentage with these policies on our
test set in Fig. 4(b). We can see that only the DRL-based
policy and the Offline policy meet the SLA requirement ef-
fectively, while the other two heuristic methods fail to control
the deadline violation percentage under 1%. It is obvious that
simply provisioning the computing resources based on cur-
rent information without looking ahead does not work well
under dynamic workloads.

We evaluate the impact of the tuning parameter λ in Fig.
5. We observe that with the increase of λ, the DRL agent
tends to allocate more VM instances to prevent the increase
of the deadline violation percentage. This is reasonable be-
cause the larger λ will amplify the impact of d(t) in the re-
ward function (Eq. 4). Finally, the choice of λ is an overall
consideration of the QoS threshold and the system budget.
Comparison of Task Scheduling Policy: We compare our
task scheduling scheme with the following baselines: 1) First
Come First Served (FCFS): tasks are scheduled by their ar-
riving orders. 2) Earliest Deadline First (EDF): the task with
the smallest bl(x) is dispatched first. 3) Soonest Job First
(SJF): the task with the soonest estimated finishing time, i.e.,
t̂aij+gl(x), is selected first. For fairness consideration, we de-
ploy the resource provisioning plan generated by the Offline
policy in Fig. 4 when testing the scheduling policies. The
distributions of the deadline violation percentage on our test
set under different task scheduling methods are illustrated in
Fig. 6. We can observe that our QoS-Aware scheduling pol-
icy outperforms the baselines. Moreover, only our approach
and the EDF policy succeed to meet the SLA requirement.

6. CONCLUSION

In this paper, we study how to provision resources and sched-
ule tasks in cloud transcoding system for live streaming. We
proposed a joint approach to solving the problem of resource
provisioning and task scheduling under the dynamic work-
loads and strict SLA requirement. We design a DRL-based
method for resource provisioning and a QoS-aware heuristic

algorithm for task scheduling. The results of trace-driven ex-
periments confirm the superiority of the proposed approach.

Acknowledgments. This work is supported in part by the
National Key R&D Program of China (2018YFB1003703),
Beijing Key Lab of Networked Multimedia, NSFC un-
der Grant No.61521002, ∼61872215 and 61531006,
Alibaba-Tsinghua Joint Project (20172001689), and SZSTI
JCYJ20180306174057899.

7. REFERENCES

[1] “SLA - encoding.com,” https://www.encoding.com/sla/,
accessed: 2018-12-10.

[2] Xiangbo Li, Mohsen Amini Salehi, and Magdy Bay-
oumi, “Vlsc: Video live streaming using cloud ser-
vices,” in IEEE BDCloud, 2016.

[3] Guanyu Gao, Yonggang Wen, and Cedric Westphal,
“Dynamic resource provisioning with qos guarantee for
video transcoding in online video sharing service,” in
ACM Multimedia, 2016.

[4] Xiangbo Li, Mohsen Amini Salehi, Magdy Bayoumi,
Nian-Feng Tzeng, and Rajkumar Buyya, “Cost-efficient
and robust on-demand video transcoding using hetero-
geneous cloud services,” IEEE TPDS, 2018.

[5] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh,
“Neural adaptive video streaming with pensieve,” in
ACM SIGCOMM, 2017.

[6] Li Chen, Justinas Lingys, Kai Chen, and Feng
Liu, “Auto: scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization,” in ACM
SIGCOMM, 2018.

[7] Guanyu Gao, Han Hu, Yonggang Wen, and Cedric West-
phal, “Resource provisioning and profit maximization
for transcoding in clouds: A two-timescale approach,”
IEEE TMM, 2017.

[8] “Live encoder settings, bitrates, and resolutions,”
https://support.google.com/youtube/answer/
2853702?hl=en, accessed: 2018-12-10.

[9] Zhengfang Duanmu, Abdul Rehman, and Zhou Wang,
“A quality-of-experience database for adaptive video
streaming,” IEEE TBC, 2018.

[10] Adrien Lebre Thuy Nguyen, “Virtual machine boot time
model,” in IEEE PDP, 2017.

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in ICML,
2016.

[12] Richard S Sutton and Andrew G Barto, Reinforcement
learning: An introduction, MIT press, 2018.

